Защита от переполюсовки

Содержание

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

  1. DC-DC понижающий преобразователь (DC-DC CC CV TC43200).
  2. Вольтметр – Амперметр.
  3. Диодный мост KBPC5010.

Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

Схема зарядного устройства для автомобильного аккумулятора

Сборка зарядного устройства

Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора.

Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

  1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
  2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

Настройка выходного напряжения и зарядного тока

На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

Защита от переполюсовки

Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

Как заряжать аккумулятор

Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо.

Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

Вольтметр – Амперметр — ссылка на товар.

DC-DC понижающий преобразователь TC43200 — ссылка на товар.

Обзор понижающего преобразователя DC-DC CC CV TC43200.

KBPC5010 — ссылка на товар.

Диодное включение транзисторов (Диоды интегральных схем на БПТ)

По технологическим соображениям в качестве диодов в полупроводниковых микросхемах используют р-n-переходы транзисторных структур: эмиттерный или коллекторный, а так же их сочетание.

Пять возможных вариантов диодного включения транзисторов представлены на рис.1-5. Каждой из схем 1-5 соответствует определенный признак схемы (рис. 16-20), эквивалентная схема (рис. 11-15) и некоторые параметры: напряжение пробоя (29-30), барьерная емкость используемого перехода (21-24), время восстановления обратного тока диода — параметр, отвечающий за быстродействие – (рис. 25-28). Например, схема 5 с признаком Uкб=0 (рис.18) имеет разрез структуры – рис.6 и эквивалентную схему 12. Работает в этой схеме переход эмиттер-база, значит барьерная емкость, действующая на переходе – Сэб. Эту схему целесообразно использовать в быстродействующих цифровых микросхемах, т.к. заряд накапливается только в базе, поэтому время восстановления обратного тока (т.е. время переключения диода из открытого в закрытое состояние) минимально – 10 нс (рис. 25). В схемах, где работает эмиттерный переход, напряжение пробоя не превышает 5…8 В, барьерная емкость 0,5 пФ, а у диодов на основе коллекторного перехода напряжение пробоя 20…50 В, барьерная емкость 0,7 пФ.

Параметры схем различны, так как концентрация примесей (а значит и носителей) больше в эмиттерном переходе, и площадь коллекторного перехода больше площади эмиттерного.

Схема

Признак

схемы

UКБ= 0

Iк= 0

UБ Э= 0

IЭ= 0

UКЭ= 0

Работающий

переход

Б–Э

Б–Э

Б–К

Б–К

Б–Э

Б–К

Прямое

напряжение, В

0,5…0,6

0,5…0,6

0,6…0,7

0,6…0,7

0,5…0,6

Напряжение

пробоя, В

5…7

5…7

30–50

30–50

5…7

Барьерная

емкость, пФ

0,5

0,5

0,7

0,7

1,2

Время

восстановления, нс

10

50

50

75

100

Эти же схемы можно использовать для изготовления стабилитронов. Если необходимы напряжения 5–10 В, то используют обратное включение диода Iк = 0 в режиме пробоя, если требуются напряжения 3–5 В, то применяют обратное включение диода Uбэ= 0, используя эффект смыкания (с ростом напряжения на коллекторе ширина коллекторного перехода расширяется настолько, что ширина базы уменьшается до нуля, переходы транзистора смыкаются, ток беспрепятственно проходит из эмиттера в коллектор, наступает пробой).

Для изготовления стабисторов можно использовать схему Uкб = 0.

Супрессор

Обозначение, параметры и применение защитных диодов

Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов. Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.

Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.

В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.

TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.

Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.

По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.

Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.

Обозначение на схеме.

На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 — симметричные; VD3 — однонаправленные).

Принцип работы супрессора (защитного диода).

У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а “излишки” уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.

До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники.

У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.

Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).

Для однонаправленного супрессора схема выглядит чуть по-другому.

В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из "фишек" защитных диодов.

Основные электрические параметры супрессоров.

  • U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

  • I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

  • U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.

  • U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VCMax. Clamping Voltage или просто Clamping Voltage.

  • I огр.

    мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

  • P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

    Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.


ВАХ однонаправленного защитного диода (супрессора)


ВАХ двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.

Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.

Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORBTM серии 1.5КЕ6.8 – 1.5КЕ440 (С)A. Они выпускаются как в симметричном, так и в несимметричном исполнении. Для симметричного диода к обозначению добавляется буква С или СА. У этой серии большой диапазон рабочих напряжений от 5,0 до 376 вольт, малое время срабатывания 1*10-9 сек, способность к подавлению импульсов большой мощности до 1500 Вт. Они прекрасно зарекомендовали себя в схемах защиты телевизионного, цифрового и другого современного оборудования.

Диоды выпускаются в корпусе DO-201.

Размеры указаны в дюймах и миллиметрах (в скобках).

Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.

На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.

Диоды TRANSILTM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSILTM.

Двунаправленные диоды TRANSILTM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Схема защиты от переполюсовки для зарядного устройства

Рассказать в:
Имеется дома простое зарядное устройство. Обыкновенная зарядка, трансформатор, мост и провода. Облезли защитные пленки на клемах, и как теперь определить кто где! Было решено собрать простейшее устройство для защиты. Скажу что раньше видел нечто похожее, но пришлось самому составлять. Как раз было реле с UPS с 10А контактами. Схема работает по такому принципу. Когда вы правильно подключаете клемы к АКБ, то оставшийся заряд в АКБ замыкает реле и начинается зарядка, горит зеленый светодиод. Когда вы перепутали клемы, загорается красный светодиод, сигнализирующий о том, что подключились не правильно. Простое устройство всего на нескольких детальках Вот схема защиты от переполюсовки R1-2 = 510
VD1-4= 1N4148 (Но можно любые)
Релюха 12В 10-15А, как говорил ранее снял со сломанного UPS
Светодиоды любые Печатная плата устройства защиты от переполюсовки: Подключаем так:
Z+ — плюс зарядного устройства, их там два, какой именно нужен вам, определите сами, поскольку некоторые реле такого типа, замыкают контакты по разному
A+ — плюс АКБ. Суда подключаем клему плюса
G – это минус, его можно прям от зарядки кидать Схема была спаяеа за 5 мин, и в работе себя показала достаточно достойно.

Желаю удачи с повторением АРХИВ:Скачать


Раздел: [Схемы]

Сохрани статью в:
Оставь свой комментарий или вопрос:



Наше сообщество в VK, а ты с нами? Присоединяйся!!!

Тясячи схем в категориях:
->Прочее
->Измерительная техника
->Приборы
->Схемыэлектрооборудования
->Источники питания (прочие полезные конструкции)
->Теоретические материалы
->Справочные материалы
->Устройства на микроконтроллерах
->Зарядные устройства (для батареек)
->Зарядные устройства (для авто)
->Преобразователи напряжения (инверторы)
->Все для кулера (Вентилятора)
->Радиомикрофоны, жучки
->Металоискатели
->Регуляторы мощности
->Охрана (Сигнализация)
->Управление освещением
->Таймеры (влажность, давление)
->Трансиверы и радиостанции
->Конструкции для дома
->Конструкции простой сложности
->Конкурс на лучшую конструкцию на микроконтроллерах
->Конструкции средней сложности
->Стабилизаторы
->Усилители мощности низкой частоты (на транзисторах)
->Блоки питания (импульсные)
->Усилители мощности высокой частоты
->Приспособления для пайки и конструирования плат
->Термометры
->Борт. сеть
->Измерительные приборы (тахометр, вольтметр итд)
->Железо
->Паяльники ипаяльные станции
->Радиопередатчики
->Вспомогательные устройства
->Телевизионная техника
->Регуляторы тембра, громкости
->Блоки питания (лабораторные)
->Усилители мощности низкой частоты (на микросхемах)
->Другие устройства для усилителей
->Cветовое оформление новогодней ёлки или праздничного зала
->Глушилки
->Телефонные жуки
->Инфракрасная техника
->Медицинская техника
->Телефония
->Для животного мира
->Конструируем усилители
->Антенны и усилители к ним
->Звонки
->Электронные игрушки
->Усилители мощности низкой частоты (ламповые)
->Управление двигателями (питание от однофазной сети)
->Программаторы микроконтроллеров
->Сверлилки
->Изучаем микроконтроллеры
->Радиоприемники
->Сигнализации
->Сотовая связь
->USB-устройства
->Блоки питания (трансформаторные)
->Радиостанции простые в изготовлении
->Источники питания (для усилителей)
->Прочеее
->защита от короткого замыкания (электронные предохранители)
->Зарядные устройства (для радиостанций)
->Мигалки
->Cварочное оборудование
->Кодовые электронные замки
->Блоки питания (бестрансформаторные)
->Часы
->Управление поворотниками
->Зажигание
->Управление водой (насосы для скважин или колодцев, полив растений)
->Моделирование
->Блоки управления стеклоочистителями
->Предварительные усилители
->Защита от перегрузки и перегрева
->Динамики
->Ремонт бытовой техники
->Дистанционное управление компьютером
->Акустические микрофоны и преобразователи
->Спутниковое ТВ
->Gsm антенны, примочки, усилители, ретрансляторы.
->Пищалки
->Роботы
->Ретрансляторы
->Паяльники и паяльные станции
->Звуковые сигнализаторы
->Рули и джойстики
->Схемы электрооборудования
->Все для "кулера" (Вентилятора)
->Работа с BGA микросхемами
->Фильтры
->Сабвуферы

Андрей Кадуков

Выбор и применение полупроводниковых TVS-диодов TRANSZORB®

Для обеспечения требуемых технических и эксплуатационных характеристик аппаратуры важную роль играет выбор и правильность применения полупроводниковых TVS-диодов.

От этого зависит ее надежность, а также надежность самих ограничителей при наличии различного рода перегрузок по напряжению в цепях радиоэлектронной аппаратуры. В связи с этим полупроводниковые TVS-диоды для любого устройства должны удовлетворять следующим требованиям:

  • технические характеристики и параметры TVS-диодов должны быть такими, чтобы при отсутствии переходных процессов они не оказывали влияния на характеристики функциональных блоков и устройств, в которых они используются;
  • уровень напряжения во время действия импульса переходного процесса в точках подключения TVS-диодов должен быть как можно ближе к уровню напряжения, действующему до перегрузки;
  • надежность TVS-диодов должна быть выше надежности блоков и устройств, которые нуждаются в защите; быстродействие ограничителей напряжения должно быть максимально возможным, чтобы обеспечить качественную защиту при больших скоростях изменения напряжения переходных процессов;
  • габариты и масса TVS-диодов должны быть меньше габаритов и массы защищаемой аппаратуры;
  • параметры и характеристики TVS-диодов должны соответствовать требованиям по устойчивости к воздействию внешних факторов, предъявляемым к аппаратуре, и иметь срок службы не менее заданного для данного класса аппаратуры.
  • При выборе полупроводниковых TVS-диодов предварительно определяют параметры импульса переходного процесса, то есть амплитуду напряжения Uп, длительность импульса и его форму; параметры защищаемой цепи: активное сопротивление Rc и (или) индуктивность цепи Lc, значение и характер напряжения, действующего в цепи при отсутствии импульса переходного процесса VС, а также допустимую амплитуду напряжения в цепи в момент воздействия импульса переходного процесса.

    Электрические параметры ограничителей напряжения устанавливают в соответствии с указанными выше параметрами исходя из следующих условий:
    Iогр,н і Iпроб, V(BR), Ј VС, Pppm і VС x Iогр,н, [1]
    где Iогр,н — ток ограничения, значение которого рассчитывают по известным параметрам Uп, Rc и (или) Lc.

    Серию полупроводниковых TVS-диодов TRANSZORB® выбирают исходя из рассчитанного значения Pppm с учетом длительности импульса переходного процесса td и его формы в соответствии с зависимостями Pppm от td (рис. 5). Тип TVS-диода из выбранной серии определяют исходя из того, что постоянное обратное напряжение VWM должно быть равно напряжению, действующему в цепи, или несколько превышать его с учетом максимального допуска. Если мощность одного TVS-диодов не удовлетворяет заданным требованиям по Pppm, их соединяют последовательно. При двух последовательно соединенных TVS-диодах мощность удваивается, при трех — утраивается и т. д. Допускается последовательное соединение любого числа TVS-диодов. При этом разброс по напряжению пробоя VBR каждого диода не должен превышать 5 %, что гарантирует равную нагрузку на последовательно соединенных приборах. Если невозможно достичь требуемой мощности при последовательном соединении диодов, допускается их параллельное соединение. Для гарантированной загруженности диодов по мощности необходимо точное их согласование по импульсному напряжению ограничения VС. В этом случае оно не должно отличаться более чем на 20 мВ. Допускается также смешанное соединение диодов. Если импульс переходного процесса представляет собой быстро затухающие многократные колебания, то расчет параметров TVS-диодов проводят по огибающей этих колебаний.

    При использовании TVS-диодов в цепях переменного тока высокой частоты, в которых их емкость влияет на характеристики и параметры защищаемых устройств, необходимо последовательно с ними включать импульсные диоды с малой собственной емкостью. При этом обратное напряжение и прямой ток каждого импульсного диода должны быть больше, чем у используемого TVS-диода.

    Рис. 29

    При монтаже TVS-диодов следует учитывать, что напряжение импульса переходного процесса в цепи (рис. 29) распределяется согласно выражению:
    Uп = Rci + Lcdi/dt + Lodi/dt + 2rдi + Uo. [2]

    Первые два слагаемых в этом выражении определяют величину падения напряжения на активном и индуктивном сопротивлениях цепи в точках a-а’, последние — на индуктивном и активном сопротивлениях TVS-диодов в точках б-б’. Из [2] следует, что чем больше значения Ic и Pppm, тем меньшая доля напряжения будет падать на входе защищаемой цепи (в точках б-б’). С целью уменьшения всплесков напряжения в цепи защиты необходимо соблюдать условия:
    Lc >Lo, Rc>2rд. [3]

    При больших скоростях изменения тока переходного процесса наибольшая эффективность защиты может быть достигнута при условии Lc >Lo. Поэтому при монтаже TVS-диодов их следует размещать как можно ближе к защищаемой схеме, а пайку выводов диода проводить на минимально возможном расстоянии от корпуса прибора.

    Рекомендуемые схемы защиты цепей электронного оборудования от электрических перегрузок по напряжению с помощью TVS-диодов TRANSZORB®

    Конкретные типы TVS-диодов TRANSZORB® в каждой схеме защиты выбираются в зависимости от характеристик защищаемых цепей. Защищаемые цепи подразделяются на цепи постоянного тока, переменного тока (симметричные или асимметричные), а также сигнальные цепи, несущие информацию посредством одно- или двухполярных импульсных сигналов. В свою очередь, сигнальные цепи и цепи переменного тока могут быть низкой или высокой частоты, что также необходимо учитывать при выборе TVS-диодов.

    Выпускаемые в настоящее время TVS-диоды TRANSZORB® не всегда могут удовлетворять одновременно всем требованиям, изложенным в предыдущем разделе, в особенности при больших уровнях энергии импульсов напряжений. Поэтому на практике применяют комбинированные схемы защиты с двумя или тремя ограничителями напряжения, выполненными с использованием различных физических принципов.

    Одноступенчатые схемы защиты

    Защита цепей постоянного тока

    Для защиты цепей постоянного тока от различного рода перегрузок по напряжению используются несимметричные TVS-диоды. Несимметричность их ВАХ позволяет осуществлять защиту на разных потенциальных уровнях, что характерно для цепей постоянного тока. Пороговое напряжение этих приборов ниже напряжения ограничителя, что обеспечивает их автоматическое отключение от цепи постоянного тока после прохождения импульса напряжения. Время их включения меньше времени самых быстрых переходных процессов, что также определяет предпочтительность их применения в цепях постоянного тока. Типовая схема включения TVS-диодов для защиты источников питания постоянного тока от электрических перегрузок по напряжению приведена на рис. 30. TVS-диоды в этих случаях должны включаться на входе каждого потребителя и выходе источника питания. На рис. 31 показаны схемы защиты цепей питания потребителей от разнополярных источников, например, для защиты микросхем.

    Рис. 30

    Рис. 31

    Для защиты от опасных напряжений ключевых элементов, в цепях которых имеется индуктивная нагрузка, TVS-диоды включаются параллельно защищаемому элементу, как показано на рис. 32, а, либо параллельно нагрузке (рис. 32, б). Для надежной защиты ключевого элемента от опасных перегрузок по напряжению используется схема защиты, приведенная на рис. 32, в.

    Рис. 32

    Одной из наиболее частых причин выхода из строя электронных устройств, включающих в себя МОП-транзисторы, является превышение допустимого значения напряжения сток-исток (VDS). Например, переключение индуктивной нагрузки вызывает перенапряжение, в результате которого превышается максимально допустимое напряжение VDS МОП-транзистора. Это вызывает лавинный пробой полупроводника и разрушение транзистора. Один из методов защиты МОП-транзистора состоит в подключении TVS-диода между стоком и истоком. Для правильного выбора TVS-диода необходимо выполнить следующие рекомендации:

  • Значение обратного напряжения TVS-диода (VWM) должно превышать максимально возможное значение напряжения питания в защищаемой схеме.
  • TVS-диод должен иметь значение напряжения ограничения (Vc) меньше, чем минимальное напряжение пробоя МОП-транзистора при пиковых значениях импульсного тока.
  • Для применения в силовых цепях и в цепях с переключениями индуктивных нагрузок рекомендуется использовать TVS-диоды TRANSZORB® со значением максимально допустимой импульсной мощности (Pppm) — 1500 Вт.
  • Переходные процессы в затворе МОП-транзистора часто происходят из-за разрядов электростатического электричества (ESD). Установка TVS-диода между затвором и истоком позволит защитить МОП-транзистор от входных переходных процессов. В этом случае рекомендуется устанавливать TVS-диод со значением обратного напряжения, превышающим входное напряжение МОП-транзистора.

    Для подавления ESD рекомендуется использовать TVS-диоды TRANSZORB® со значением максимально допустимой импульсной мощности (Pppm ) — 400 Вт.

    Схема, иллюстрирующая эти методы защиты, показана на рис. 33.

    Рис. 33

    Защита цепей питания переменного тока

    Защита цепей переменного тока может осуществляться путем включения двух несимметричных TVS-диодов, как показано на рис. 34 и 35. Включение элементов защиты на входе и выходе трансформатора позволит снизить уровень напряжения на его выходе. При наличии в цепи переменного тока выпрямительных диодов, включенных по мостовой схеме, их защита может быть осуществлена одним несимметричным TVS-диодом при его включении в диагональ моста (рис. 36). Однако быстродействие защиты в этом случае будет определяться временем включения выпрямительных диодов.

    Рис. 34

    Рис. 35

    Рис. 36

    Защита информационных цепей и цепей переменного тока высокой частоты

    Применение TVS-диодов — это хорошее решение для защиты подобных цепей. Выбор типа TVS-диода TRANSZORB® зависит от характера сигналов, действующих в цепях (одно- или двухполярных), и частоты их повторения. Так, для защиты цепей с однополярными сигналами может быть использована схема включения несимметричных TVS-диодов, приведенная на рис. 37 и 38. TVS-диоды включаются в каждую сигнальную цепь передачи данных. При наличии в цепи двухполярных сигналов вместо несимметричных используются симметричные TVS-диоды.

    Рис. 37

    Рис. 38

    В цепях высокой частоты рекомендуется использовать малоемкостные TVS-диоды или для уменьшения емкости TVS-диода последовательно с ними включать малоемкостные импульсные диоды (диоды с барьером Шотки), как это показано на примере защиты схемы симметричных линий связи (рис. 39).

    Рис. 39

    Многоступенчатые схемы защиты

    Многоступенчатые схемы защиты используются в том случае, когда величина поглощаемой энергии TVS-диода превышает установленный для него допустимый уровень. Типичным примером использования многоступенчатой защиты является двухступенчатая защита в симметричных линиях связи, где TVS-диоды включают в каждую цепь линии симметрично относительно общей шины заземления, как показано на рис. 40 для случаев защиты низкочастотных и высокочастотных цепей. Время прохождения импульса тока через TVS-диоды VD1–VD6 равно времени запаздывания пробоя разрядников Р1-Р2, которое не превышает 0,5…1 мкс, поэтому поглощаемая диодом энергия невелика и основная доля энергии напряжения поглощается затем разрядником.

    Рис. 40

    При наличии второй ступени защиты в цепь должен быть дополнительно включен резистор, сопротивление которого определяется по следующей формуле:
    Rогр = Uc1 — Uc2 / Ippm,
    где Uc1, Uc2 — уровни ограничения разрядника и TVS-диода соответственно; Ippm — допустимый ток TVS-диода.

    Включение резисторов с незначительным сопротивлением (единицы Ом) в информационные цепи не окажет заметного влияния на параметры рабочих сигналов.

    Литература:

    1. Черепанов В. П., Хрулев А. К., Блудов И. П. Электронные приборы для защиты РЭА от электрических перегрузок. — М.: Радио и связь, 1994. С. 223.
    2. http://www.gensemi.com.

    Добавить комментарий

    Закрыть меню