Интересные числа в математике

Математика — необычно и интересно!

Основное тригонометрическое тождество

sin2 + cos2 = 1
или:
апельsin2 + абриcos2 = 1

Как в уме умножать на 11?

Как быстро в уме умножать двухзначные числа на 11? Всё просто!

Просуммируй первую и вторую цифру числа, которое собираешься умножать на 11, и поставь сумму цифр посередине. Получившееся число из трёх цифр и есть результат. В случае если сумма цифр окажется больше 10, например 14, то прибавь 1 к первой цифре, а 4 ставь посередине.

Вот примеры, по котором всё станет ясно:
25 x 11 = 2 (2+5) 5 = 275,
34 x 11 = 3 (3+4) 4 = 374,
48 x 11 = 4 (4+8) 8 = 4 (12) 8 = (4+1) (2) 8 = 528.

Калькулятор не работает 🙂

Знаете, что в калькуляторе Виндуса есть ошибка?
1. Откройте калькулятор Виндуса.
2. Введите 6084.
3. Нажмите кнопку деления [/].
4. Введите 78.
5. Нажмите кнопку «равно» [=].

Калькулятор не реагирует. Если нажать на «равно» ещё раз и ещё-ещё раз, то начинает выдавать какую-то чушь.

Как делали треугольные молочные пакеты

Помните молоко в треугольных пакетах? Как вы думаете, если пакет расклеить, то какой формы будет развёртка? Можно предположить, что получится 4 треугольника с полосочками по бокам для склейки. Но на самом деле это не так. Развёртка будет представлять ни что иначе, как… прямоугольник. Да-да, именно прямоугольник. Прямоугольник сначала склеивают в цилиндр (боковую поверхность цилиндра), потом вдоль взаимно перпендикулярных диаметров оснований — в треугольный (а правильнее, тетраэдрический) пакет. Технологически осуществить это гораздо проще, чем склейку пакета из треугольников.

До скольких вы умеете считать?

Спросите маленького ребёнка: «До скольких ты умеешь считать?». Он ответит: «До десяти!» Который постарше, ответит «до тысячи» или «до миллиона». А если спросить взрослого? Попробуйте ответить сами себе на простой вопрос: «До скольких я умею считать?» Просто, ради интереса.

Как правило, взрослые умеют считать до нескольких миллиардов или триллионов. Дальше не помнят или не умеют. И вообще, это нормально. Все последующие порядки — забивание головы «мусором». Но сам вопрос, банальный на первый взгляд, заставляет взрослого ненадолго задуматься. Проверено на практике 🙂

Для справки:
десять
сто
тысяча
миллион
биллион или миллиард
триллион
квадриллион
квинтиллион
секстиллион
септиллион
октиллион
и т.д.

Как сочинять стихи?

Читайте числа, как они есть: двадцать сорок тридцать три…
20 40 33
10 18
50 11 03
60 12

Математика в анекдотах

— Почему когда поезд едет, у него колёса стучат? Ведь они же круглые…
— А ты разве не помнишь формулу площади круга?
— Помню. S = πR2
— Ну… Квадрат, понимаешь?! Вот именно он и стучит.

* * *
— Какое сегодня число?
— Пи.
— Почему???
— Ну, как почему?! 3 месяц и 14 день… 3.14

О пиве…

Удивите знакомых и друзей своими разносторонними знаниями в математике: пивная пена в бокале оседает по закону экспоненты.

Удивительные квадраты

Ниже удивительный квадрат: в любом ряду сумма чисел равна 66, даже смежные четыре клетки в сумме дают 66. Попробуйте посчитать, сколькими разными способами можно в этом квадрате получить 66.

1 8 29 28
30 27 2 7
4 5 32 25
31 26 3 6

Вот ещё один удивительный квадрат. Его придумали китайские учёные три тысячелетия назад. В нём сумма цифр по вертикали, горизонтали или диагонали равна 15.

Склонение по падежам

Есть известный пример использования дробей для получения вопроса дательного падежа. Его иногда учителя показывают классу, чтобы разрядить обстановку. Одно время он был популярен на форумах в интернете. Однако не все о нем слышали, поэтому мы решили включить его в нашу статью, как еще один необычный способ использования математики в разных областях.

Именительный: кто? что?
Родительный: кого? чего?
Дательный: кому? …
Чтобы получить вопрос для дательного падежа:
1) принимаем вопрос за Х.
2) составляем отношение: Кого?/Чего?

= Кому?/х?
3) Выражаем Х: Х = (Кому?

* Чего?)/Кого?
4) Сокращаем числитель и знаменатель дроби на «Ко» и «го»
5) Оставшиеся после сокращения слоги «му» и «Че» переставляем местами
6) Получаем, что Х = «Чему?»

Сокращения

Сокращение слов путем их записи в виде букв и цифр — еще один из примеров использования математики в быту. Вы их не раз видели, возможно, использовали сами. Мы перечислим некоторые:

7я — семья
40а — сорока
100 лица — столица
про100 — просто
и т.д.
gr8 — great
b4 — before
l8 — late
w8 — wait
2day — today
и т.д.

Загадай число

Задумай число. Прибавь к нему следующее по порядку. Добавь к результату 9. Раздели на 2 (считай только целые числа). Вычти теперь задуманное число. Сколько получилось? Пять! < /p>

Пример.
Берём 70.
Прибавляем следующее: 70 + 71 = 141
Добавляем 9: 141 + 9 = 150
Делим на 2: 150 : 2 = 75
Вычитаем задуманное: 75 — 70 = 5

Как быстро составить таблицу умножения на 9?

Запишем в столбик:
9×1 =
9×2 =
9×3 =
9×4 =
9×5 =
9×6 =
9×7 =
9×8 =
9×9 =
Затем, не задумываясь, проставим после знака равенства цифры от 0 до 9 сверху вниз:
9×1 = 0
9×2 = 1
9×3 = 2
9×4 = 3
9×5 = 4
9×6 = 5
9×7 = 6
9×8 = 7
9×9 = 8
9×10 = 9
Затем проставим вторую цифру от 0 до 9 снизу вверх:
9×1 = 09
9×2 = 18
9×3 = 27
9×4 = 36
9×5 = 45
9×6 = 54
9×7 = 63
9×8 = 72
9×9 = 81
9×10 = 90

[an error occurred while processing the directive]

МАТЕМАТИЧЕСКИЕ ДОСУГИ
Из портфеля отдела

ИНТЕРЕСНЫЕ СВОЙСТВА ЧИСЕЛ

Однажды мой сын Николай, будучи еще учеником десятого класса, обнаружил интересную закономерность чисел. Почти все целые положительные числа, для краткости назовем их базовыми, могут быть представлены в виде суммы чисел отрезка натурального ряда, например:

6 = 1 + 2 + 3

7 = 3 + 4

15 = 1 + 2 + 3 + 4 + 5.

Однако ни для одного из базовых чисел, равных 2n, где n = 0, 1, 2…, не существует отрезка натурального ряда, сумма чисел которого равнялась бы числу 2n. Читатели могут сами попробовать подобрать ряды чисел, сумма которых равнялась бы 2n, но хочу предупредить, что подобный подбор даже для базовых чисел в пределах сотни является довольно утомительным занятием и лучше эту работу поручить компьютеру, что нами и было сделано. С помощью несложной программы компьютер находил отрезки натурального ряда чисел, сумма которых равнялась данному базовому числу, причем для любого базового числа находились все возможные отрезки, удовлетворяющие условию. Как мы и предполагали, ни одна из степеней двойки в диапазоне базовых чисел до 1000 (именно такой диапазон был просчитан) не может быть представлена в виде суммы чисел отрезка натурального ряда, все же остальные числа допускали подобное представление.

Анализируя полученные результаты, обнаружили еще одну интересную закономерность. Оказалось, что все без исключения простые числа в диапазоне до 1000 могут быть представлены только в виде суммы двух рядом стоящих чисел, например:

17 = 8 + 9

29 = 14 + 15

61 = 30 + 31,

и никакое другое представление для них невозможно. Некоторые базовые числа, не относящиеся к простым, также могут быть представлены в виде суммы чисел только одного отрезка натурального ряда, однако, в отличие от простых чисел, этот отрезок всегда имеет больше двух чисел:

886 = 220 + 221 + 222 + 223

958 = 238 + 239 + 240 + 241.

Наряду с вышеописанными имеются базовые числа, которые могут быть представлены в виде сумм чисел нескольких отрезков натурального ряда (допускают множественное представление), например:

945 = 2 + 3 + 4 + … + 42 + 43

945 = 10 + … + 44

945 = 17 + … + 46

945 = 22 + … + 48

945 = 35 + … + 55

945 = 44 + … + 61

945 = 56 + … + 70

945 = 61 + … + 74

945 = 90 + … + 99

945 = 101 + … + 109

945 = 132 + … + 138

945 = 155 + … + 160

945 = 187 + … + 191

945 = 314 + … + 316

945 = 472 + 473.

Интересно отметить, что стоящее рядом с числом 945 число 944 может быть представлено только одним способом:

944 = 14 + … + 45.

Вообще говоря, никакой системы в количестве слагаемых отрезка натурального ряда, сумма которых равнялась бы базовому числу, обнаружить не удалось. Также не выявлено закономерности в количестве возможных представлений одного базового числа суммой чисел отрезков натурального ряда.

Представляет большой интерес поиск доказательства невозможности представления степеней двойки в виде суммы чисел отрезка натурального ряда, а также того, что простое число может быть представлено в виде суммы чисел отрезка натурального ряда только в случае, если отрезок включает два числа. Уверен, что доказательство этих интересных теорем (пока это только гипотезы) могло бы стать вкладом в теорию чисел.

П. МАНТАШЬЯН
(г. Черкесск).

Математические формулы – жизнь среди чисел

Решение задачи зависит от правильного подхода и умения применять знания.

Математические формулы – это плод многолетних трудов массы ученых, современным же людям остается найти в массе комбинаций ту самую, единственно подходящую.

Математика – наука, которая кажется незаметной, но она сопровождает нас всю сознательную жизнь. С числами и формулами нас знакомят в школе, а жизнь находит применение базовым знаниям.

Не каждый человек имеет способности к математике, но нормативы и контрольные, экзамены и тестирования приходится сдавать практически всем. Сложные и простые задачи приходится решать ежедневно, тем более студентам и школьникам. Решение дается не всегда просто, ведь строгие педагоги спешат дать знания и проверить степень усвоения материала.

Математические формулы – простой ключ к решению задач

Обширная и интересная наука все развивается, усложняясь и представляя новые решения старых вопросов. Ученые веками изучали закономерности и выводили формулы, доказывали теоремы и рассуждали о смысле аксиомы. Огромные труды, многовековые познания современные студенты должны освоить в короткий промежуток времени.

Это невозможно.

Все осознают, что объять необъятные познания в области науки невозможно, поэтому курс математики и подразделов данной науки дает лишь поверхностное понимание законов и правил, лишь самые востребованные знания.

С первого класса и до конца жизни человек изучает формулы по математике, иногда даже не осознавая того. Их настолько много, что запомнить весь массив не удастся никогда. На выручку идут специальные сборники, классифицированные по различным характеристикам, в которых также нужно уметь ориентироваться. Применение правильной формулы дает простое решение задачи.

Как найти ключ к решению?

Еще раз следует отметить, что формул много, поэтому справочная информация выручит в трудный момент. Математические формулы разделяются соответственно разделам обширной науки, и состоят из определенного количества параметров, зная часть из которых, можно найти решение.

Умение оперировать познаниями в математике необходимо, поэтому мы собрали самые часто используемыеформулы для вас, ссылки на которые есть в разделе Полезные материалы для изучения математики.

Применение математических формул

Математику невозможно вычленить из смежных наук – физики, информатики и т.п. Применение формул иногда настолько неожиданно, что трудно поверить, что этот результат возможен лишь благодаря «скучной» науке под названием «математика».

Математические формулы в процессе эволюции своего назначения претерпевали изменения, и связано это было с изменением понимания назначения самих формул. Числа давно уже перестали быть просто числами, а стали делиться на элиту в виде простых чисел, и на все остальные цифры. Когда любое число стало возможным представить в виде двух простых, а их, в свою очередь, представить кодированными символами, то и методы действий над ними тоже немного изменились. Не секрет, что каждый человек, работающий в сфере чисел, имеет свои наработки и взгляды на алгебраические формулировки. Суть в том, что как раз из этого и возникают предпосылки к возникновению новых формул и трактовок к их пониманию. Как бы ни были нам в прошлом дики массивы чисел, сейчас это норма, и массивы массивов только помогают в развитии других аспектов математических формул, например, в криптографии.

Студенческие годы пройдут, и экзамены будет устраивать сама жизнь. Научитесь оперировать исходными данными и применять формулы. Эти навыки позволят успешно развивать свою жизнь, правильно распоряжаясь своими ресурсами.

Статьи о математике и решении задач

Даже если вы ничего не понимаете в математике, даже если в школе ненавидели этот предмет, даже если считаете себя чистым гуманитарием… В общем, в любом случае — эти факты вам понравятся.

1. Английский математик Абрахам де Муавр в престарелом возрасте однажды обнаружил, что продолжительность его сна растёт на 15 минут в день. Составив арифметическую прогрессию, он определил дату, когда она достигла бы 24 часов — 27 ноября 1754 года. В этот день он и умер.

2. Религиозные евреи стараются избегать христианской символики и, вообще, знаков, похожих на крест. Например, ученики некоторых израильских школ вместо знака «плюс» пишут знак, повторяющий перевёрнутую букву «т».

3. Подлинность купюры евро можно проверить по её серийному номеру буквы и одиннадцати цифр. Нужно заменить букву на её порядковый номер в английском алфавите, сложить это число с остальными, затем складывать цифры результата, пока не получим одну цифру.

Если эта цифра — 8, то купюра подлинная.

Ещё один способ проверки заключается в подобном складывании цифр, но без буквы. Результат из одной буквы и цифры должен соответствовать определённой стране, так как евро печатают в разных странах. Например, для Германии это X2.

4. Бытует мнение, что Альфред Нобель не включил математику в список дисциплин своей премии из-за того, что его жена изменила ему с математиком. На самом деле Нобель никогда не был женат.

Настоящая причина игнорирования математики Нобелем неизвестна, но есть несколько предположений. Например, на тот момент уже существовала премия по математике от шведского короля. Другое — математики не делают важных изобретений для человечества, так как эта наука имеет чисто теоретический характер.

5. Треугольник Рело — это геометрическая фигура, образованная пересечением трёх равных кругов радиуса a с центрами в вершинах равностороннего треугольника со стороной a. Сверло, сделанное на основе треугольника Рело, позволяет сверлить квадратные отверстия (с неточностью в 2%).

6. В русской математической литературе ноль не является натуральным числом, а в западной, наоборот, принадлежит ко множеству натуральных чисел.

7. Американский математик Джордж Данциг, будучи аспирантом университета, однажды опоздал на урок и принял написанные на доске уравнения за домашнее задание. Оно показалось ему сложнее обычного, но через несколько дней он смог его выполнить. Оказалось, что он решил две «нерешаемые» проблемы в статистике, над которыми бились многие учёные.

8. Сумма всех чисел на рулетке в казино равняется «числу зверя» — 666.

9. Софья Ковалевская познакомилась с математикой в раннем детстве, когда на её комнату не хватило обоев, вместо которых были наклеены листы с лекциями Остроградского о дифференциальном и интегральном исчислении.

10. В штате Индиана в 1897 году был выпущен билль, законодательно устанавливающий значение числа Пи равным 3,2. Данный билль не стал законом благодаря своевременному вмешательству профессора университета.

Участвуйте в народном рейтинге интересных историй и фактов. Если вам понравилась статья — жмите на кнопку. Это интересно142

Вы можете выбрать арифметические действия: только сложение, вычитание, или все действия.

Вы можете выбрать, какие числа используются будут использоваться в примерах и в ответах. Например: только однозначные числа, или числа до 20, до 100.

Так же можно регулировать «сложность» примеров — этот параметр отвечает за то, насколько «неудобными» в примерах будут числа.

Готовые файлы для распечатки

Вы можете скачать примеры в виде готовых к распечатке файлов.
Для этого в блоке «Готовый файл для распечатки» установите количество страниц для вывода, нажмите «Изменить» и пройдите по ссылками «Файл заданий» или «Файл ответов».

В файле заданий будут только задания с прочерками вместо ответов, а в файле ответов — примеры с ответами.

На каждой странице — 3 колонки по 34 примеров в каждой.
Для удобства, наверху у каждой колонки указан номер варианта (случайное число) — это номер совпадает в Файле заданий и Файле ответов.

Просто сохраните два файла на компьютере, а затем распечатайте их.

Печать из браузера или перенос в другое приложение

Вы можете распечатать примеры прямо из браузера.
Для этого в блоке «Свой формат печати» задайтие количество примеров, и нажмите «Изменить».

На открывшейся странице вы можете выбрать шрифт для печати, задать количество столбцов и примеров для вывода.

Воспользуйтесь меню «Файл > Предварительный просмотр» вашего браузера для контроля расположения примеров, а затем распечатайте примеры прямо из браузера.
Вы можете выбрать вариант «для ученика» — только задания или «для учителя» с ответами.

Интерактивная проверка устного счёта

Вы можете считывать примеры прямо с экрана планшета, мобильного телефона, и сразу проверять правильность решения.
Для этого в блоке «Интерактивные примеры» задайтие количество примеров, и нажмите «Изменить».

На открывашейся странице вы можете задать параметры для комфортного отображения примеров, настроив шрифт, количество колонок и выводимых примеров.

После того, как пример будет решён устно, правильность решения можно проверить щёлкнув на нём — откроется ответ.

Добавить комментарий

Закрыть меню