Кто такой гаусс

Кузнецова Е.И., Столповская Т.А.

Иоганн Карл Фридрих Гаусс – немецкий математик, астроном и физик, считается одним из величайших математиков всех времён, «королём математиков».

Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Рассказывают, что в начальной школе, где учился Гаусс (6 лет), учитель, чтобы занять класс дал задание ученикам вычислить сумму всех натуральных чисел от 1 до 100. Маленький Гаусс ответил на вопрос почти мгновенно, чем невероятно удивил всех и, прежде всего, учителя.

Гаусс увидел, что сложение чисел всего ряда следует проводить попарно, и составил алгоритм быстрого сложения чисел от 1 до 100.

1. Необходимо подсчитать количество пар чисел в последовательности от 1 до 100. Получаем 50 пар.

2. Складываем первое и последнее числа всей последовательности. В нашем случае это 1 и 100. Получаем 101.

3. Умножаем количество пар чисел в последовательности на полученную в пункте 2 сумму. Получаем 5050.

Таким образом, сумма натуральных чисел от 1 до 100 равна 5050.

Первый крупный труд Гаусса «Арифметические исследования» содержит его работы по теории чисел и высшей алгебре. Он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки. Гаусс показал, что если число сторон правильного многоугольника есть простое число вида (22"+1), то такая конструкция возможна. Сам Гаусс сконструировал правильный семнадцатиугольник. Гаусс придавал этому решению очень большое значение, что видно из его завещания начертать на его могильном памятнике чертеж правильного семнадцатиугольника, вписанного в окружность.

Гаусс считается также одним из создателей неевклидовой геометрии. Он применил теорию комплексных чисел при решении различных задач. Ввел термин «комплексное число», причем плоскость комплексных чисел так и называют плоскостью Гаусса.

Заслуг Гаусса в астрономии не меньше, чем в математике. Основной его труд по астрономии «Теория движения небесных тел» содержит способ определения орбит планет на основе наблюдений.

Велики заслуги Гаусса и в физике, что, в частности, отражено в названии единицы магнитной индукции «гаусс». Кроме теоретических работ Гаусса по физике, следует отметить изобретенные им физические приборы. В области физики Гаусс сотрудничал с В. Вебером. Результатом этого сотрудничества явилось изобретение в 1833 году первого в Германии электромагнитного телеграфа.

Следует сказать, что Гаусс, несмотря на великолепные достижения в различных областях науки, был, прежде всего, математиком. В его жизни можно отметить периоды, когда он работал в других отраслях науки, но и тогда он не забывал о математике как теоретической, гак и прикладной.

Значительный вклад Гаусса в Алгебру. Он дал строгое, даже по современным критериям, доказательство основной теоремы алгебры. Открыл кольцо целых комплексных гауссовых чисел, создал для них теорию делимости и с их помощью решил немало алгебраических проблем. Указал знакомую теперь всем геометрическую модель комплексных чисел и действий с ними.

Гаусс дал классическую теорию сравнений, открыл конечное поле вычетов по простому модулю, глубоко проник в свойства вычетов.

В геометрии Гаусс впервые начал изучать внутреннюю геометрию поверхностей. Он открыл характеристику поверхности (гауссову кривизну), которая не изменяется при изгибаниях, тем самым заложив основы римановой геометрии. В 1827 году опубликовал полную теорию поверхностей. Труды Гаусса по дифференциальной геометрии дали мощный толчок развитию этой науки на весь XIX век. Попутно он создал новую науку — высшую геодезию.

Гаусс также первым построил неевклидову геометрию и поверил в её реальность [3], но был вынужден держать свои исследования в секрете (вероятно, из-за того, что они шли вразрез с догматом евклидовости пространства в доминирующей в то время Кантовской философии). Тем не менее, сохранилось письмо Гаусса к Лобачевскому, в котором ясно выражено его чувство солидарности, а в личных письмах, опубликованных после его смерти, Гаусс восхищается работами Лобачевского. В 1817 году он писал астроному В. Ольберсу [4]: «Я прихожу всё более к убеждению, что необходимость нашей геометрии не может быть доказана, по крайней мере человеческим рассудком и для человеческого рассудка.Может быть, в другой жизни мы придем к взглядам на природу пространства, которые нам теперь недоступны.»

Гаусс доказал, основную теорему теории поверхностей. В его бумагах обнаружены содержательные заметки по тому предмету, что позже назвали топологией. Причём он предсказал фундаментальное значение этого предмета.

Гаусс завершил теорию построения правильных многоугольников с помощью циркуля и линейки.

В математическом анализе Гаусс продвинул теорию специальных функций, рядов, численные методы, решение задач математической физики. Создал математическую теорию потенциала. Много и успешно занимался эллиптическими функциями, хотя почему-то ничего не публиковал на эту тему.

В астрономии Гаусс, в первую очередь, интересовался небесной механикой, изучал орбиты малых планет и их возмущения. Он предложил теорию учёта возмущений и неоднократно доказывал на практике её эффективность. В 1809 году Гаусс нашёл способ определения элементов орбиты по трём полным наблюдениям (если на три момента времени известны -время, прямое восхождение и склонение).

Отметим другие достижения Гаусса:

Для минимизации влияния ошибок измерения Гаусс использовал свой метод наименьших квадратов, который сейчас повсеместно применяется в статистике. Хотя он не первый открыл распространённый в природе нормальный закон распределения, но он настолько тщательно его исследовал, что график распределения с тех пор часто называют гауссианой.

В физике Гаусс развил теорию капиллярности, теорию системы линз. Гаусс заложил основы математической теории электромагнетизма: первым ввёл понятие потенциала электрического поля. Совместно с Вебером Гаусс сконструировал первый примитивный электрический телеграф.

С именем Гаусса связаны термины:

* Алгоритм Гаусса (вычисления даты пасхи)

* Гаусс (единица магнитной индукции)

* Дискриминанты Гаусса

* Гауссова кривизна

* Интерполяционная формула Гаусса

* Лента Гаусса

* Малая планета № 1001 (Gaussia)

* Метод Гаусса решения систем линейных уравнений

* Метод Гаусса-Жордана

* Метод Гаусса-Зейделя

* Нормальное или Гауссово распределение

* Прямая Гаусса

* Пушка Гаусса

* Ряд Гаусса

* Теорема Гаусса — Ванцеля

* Фильтр Гаусса

* Формула Гаусса — Бонне

Списокиспользованнойлитературы.

1.

Гиндикин С. Г. Рассказы о физиках и математиках.

M: МЦНМО, 2001 (глава «Король математиков»).

2. Математика XIX века / Ред. А. Н. Колмогоров, А.П. Юшкевич. –М.: Наука, 1978, том I, с.52.

3. Гаусс К. Ф. Отрывки из писем и черновиков, относящиеся к неевклидовой геометрии // Сб.: Основания геометрии. − М.: ГИТТЛ, 1956.

4. Об основаниях геометрии: Сборник классических работ по геометрии Лобачевского и развитию ее идей. − М.: Гостехиздат, 1956. − С.103.

5. http://ru.wikipedia.org/wiki/Гаусс,_Карл_Фридрих


Доклад: Карл Фридрих Гаусс

(1777-1855)

Гаусса нередко называют наследником Эйлера. Они оба носили неформальное звание «король математиков» и удостоились посмертной уважительной шутки: «Он перестал вычислять и жить». Их родным языком был немецкий, но научные труды оба предпочитали писать по латыни. Впрочем, Гаусс оказался последним латинистом среди крупных ученых Европы.

Он с гордостью ощущал себя питомцем эпохи Просвещения. Действительно, в какую иную эпоху талантливый сын садовника и водопроводчика мог удостоиться персональной стипендии от герцога Брауншвейгского и быть принятым в Геттингенский университет" Этот долг Гаусс вернул родине с лихвой: математическая школа в Геттингене сделалась сильнейшей в Германии и процветала более ста лет " пока к власти не пришел Гитлер.

Математический талант Гаусса проявился в раннем детстве " и конечно, первым его увлечением стала арифметика. В 9 лет он открыл (во время школьного урока) формулу суммы арифметической прогрессии. Позднее Гаусс перенес все теоремы арифметики натуральных чисел на многочлены и на целые комплексные числа. В итоге в алгебре появилось общее понятие кольца. Заодно выяснилось, что множество простых чисел вида (4к+1) бесконечно, и что все они представимы в виде суммы двух квадратов. Это был первый новый факт такого рода, открытый со времен Эратосфена. Позднее ученик Гаусса " Петер Дирихле " намного превзошел учителя, доказав, что в любой арифметической прогрессии содержится бесконечное множество простых чисел (если первый член и разность этой прогрессии взаимно просты).

Гаусс до старости сохранил юношескую жажду знаний и огромное любопытство. Например, в 62 года он быстро выучил русский язык, чтобы самому разобраться в трудах своего коллеги " Николая Лобачевского. Но обычно Гаусс избегал читать чужие статьи или книги.

Ему хватало формулировки основного результата; доказательство он придумывал сам, заодно открывая многие факты, о которых не подумал сам автор. Такая привычка оформилась в юности " когда 19-летний Гаусс решил сам освоить все достижения и методы алгебры, не пропуская ни одного яркого приложения этой древней науки.

Результат был поразительный. Гаусс нашел алгебраическое доказательство неразрешимости многих задач на построение циркулем и линейкой, которые мучили еще Пифагора. Ключевая идея Гаусса очень проста: надо изобразить точки плоскости комплексными числами (как начал делать Эйлер), и тогда геометрическая задача превратится в алгебраическую! Но как доказать неразрешимость алгебраической задачи"

Гаусс заметил, что любое построение циркулем и линейкой сводится на алгебраическом языке к решению цепочки квадратных уравнений. А каждая «непокорная» задача на построение сводится к решению уравнения-многочлена степени большей, чем 2. Почему же решение такого уравнения иногда не сводится к решению квадратных уравнений" Тут мало одних расчетов; нужно вводить новые математические понятия, отражающие суть дела.

Гаусс изобрел два таких понятия: поле и векторное пространство. В итоге векторная алгебра, давно привычная физикам и геометрам, стала самостоятельной алгебраической наукой. Оказалось, что комплексное число, достижимое с помощью циркуля и линейки, лежит в некотором поле размерности 2… " а всякий корень неразложимого многочлена степени (к) лежит в поле размерности (к). Если интересующее нас число лежит в том и в другом поле " значит, число 2… делится на (к); то есть, само число (к) является степенью двойки.

Из этого рассуждения следует, что корень любого неразложимого многочлена степени 3 нельзя построить циркулем и линейкой. Например, не удается разделить на 3 равные части угол в 60", или построить треугольник по трем неравным медианам. Такой же запрет препятствует делению окружности на 7, 11, 13, 9 или 25 равных частей. Но для 5 или 17 частей запрета нет, поскольку числа 5-1 = 4 и 17-1 = 16 суть степени двойки. Поэтому эллины нашли способ построения правильного 5-угольника, а Гауссу удалось построить правильный 17-угольник. Он завещал изобразить эту фигуру на своем надгробии " что и было сделано. Однако проблема «квадратуры круга» Гауссу не покорилась.

К 24 годам Гаусс вошел в число самых известных математиков Европы. Но для полной славы нужно было отличиться в области небесной механики; тут судьба подбросила Гауссу достойную задачу. В первую ночь 1801 года астрономы обнаружили на небе малую планету Цереру, чья траектория лежит между Марсом и Юпитером. После немногих наблюдений планета была потеряна, и астрономы обратились за помощью к математикам.

Гаусс первым откликнулся на этот призыв: по трем наблюдениям он сумел предсказать все будущие положения Цереры. Полвека спустя теория возмущений Гаусса позволила астрономам рассчитать положение на небе еще никем не виданной планеты " Нептуна.

В 30 лет Гаусс считался уже «королем» европейских математиков. Соперничать ему было не с кем " да он и не любил это занятие. Материальное благосостояние не угрожало профессору. Всесильный Наполеон тогда успешно грабил всю Европу, а Ганновер " особенно, поскольку это была вотчина короля непокорной Англии. Молодая жена Гаусса умерла. Только поиск новых тайн природы (в той мере, в какой они открываются через математику) помогал ученому отвлечься от невзгод.

Замечательный успех в области геометрических построений побудил Гаусса к поискам новых геометрических доказательств. Он увлекся старой, как мир, загадкой евклидова постулата о параллельных прямых. В 1818 году Гаусс догадался, что этот постулат может иметь иную формулировку " но не на плоскости, а на других поверхностях, неведомых Евклиду.

До конца жизни Гаусс хранил молчание о своих открытиях в области оснований геометрии " даже после того, как их повторили более молодые математики: Николай Лобачевский из Казани и Янош Больяи из Темешвароша. В чем тут дело" Кое-что можно понять из писем Гаусса к его друзьям; об остальном приходится догадываться. Чтобы убедить научный (и околонаучный) мир в независимости постулата Евклида " надо предъявить наглядную модель, где выполнены все прочие аксиомы, а эта заменена чем-то другим. Например, параллельных прямых может вовсе не быть, если любые две прямые пересекаются. Так обстоит дело на сфере, где роль прямых играют окружности наибольшего радиуса. Позднее эту геометрию назвали именем Римана, но в начале 19 века ее никто не принял бы всерьез. Иной вариант геометрии " со многими прямыми, проходящими через одну точку и не пересекающими данную прямую " называют геометрией Лобачевского. Она реализуется на поверхности с постоянной отрицательной кривизной: на так называемой псевдосфере, которая получается при вращении трактрисы («кривой преследования», похожей на гиперболу) вокруг ее оси. Гаусс то ли не смог построить псевдосферу, то ли не заметил ее уникальные свойства; а без этого он не решился огласить новую «неестественную» геометрию перед широкой публикой.

Но почему Гаусс не распространил свою гипотезу о параллельных прямых хотя бы в узком кругу математиков" Ведь именно так поступил Пифагор, обнаружив несоизмеримость диагонали квадрата с его стороной! Вероятно, Гаусс рассуждал так: если постулат о параллельных прямых независим от прочих аксиом, то исчезает единая наука геометрия! Она разделяется, по крайней мере, на три ветви " согласно трем вариантам постулата о параллельных (по Евклиду, по Риману и по Лобачевскому). А что дальше" Не продолжится ли ветвление геометрической науки неограниченно " по каждой новой аксиоме" Не охватит ли этот процесс всю математику" И кто захочет работать в такой раздробленной науке"

Видимо, так рассуждал Гаусс во второй половине своей жизни " и молчал, не в силах ответить себе и другим на этот грозный вопрос. Трудно ответить на него и в 20 веке " после того, как смутная догадка Гаусса превратилась в 1931 году в суровую теорему Геделя о неполноте любой формальной системы аксиом.

Но ученому надо жить и работать " даже когда его разум не дает ответа на мучающие его вопросы. После 1820 года Гаусс увлекся геометрией произвольных гладких поверхностей. Он дал определение их кривизны и нашел неожиданную связь кривизны с эйлеровой характеристикой поверхности. Занимался Гаусс и математической физикой: он строил математическую теорию магнетизма, в то время как в Англии Фарадей изобретал способы технического использования этой природной силы.

Не забывал Гаусс и о комплексных числах, которые так славно помогли ему разобраться в тайнах геометрических построений. Как будто развлекаясь, одинокий мудрец придумывал все новые доказательства своей теоремы о том, что всякий многочлен имеет комплексный корень. Видимо, Гаусс хотел понять: имеет ли эта «чисто алгебраическая» проблема хоть одно число алгебраическое решение, или неизбежны комбинации алгебры с геометрией, либо с математическим анализом"

Оказалось, что такие комбинации неизбежны. Любая сложная проблема решается лишь после нескольких ее переводов с одного математического языка на другой. И вот уже два столетия вся математическая наука развивается, а в режиме взаимопомощи и сплетения ее различных ветвей. Гаусс первым начал работать в таком режиме: как бы перебрасывая горящий уголек из одной ладони в другую. За это его называют «отцом современной математики».

Карл Фридрих Гаусс (нем. Carl Friedrich Gauß) — выдающийся немецкий математик, астроном и физик, считается одним из величайших математиков всех времён.

Карл Фридрих Гаусс родился 30 апреля 1777г. в герцогстве Брауншвейг. Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов. У Гаусса в раннем возрасте проявились необычайные способности к математике. Однажды, при расчетах своего отца, его трехлетний сын заметил ошибку в вычислениях. Расчет был проверен, и число, указанное мальчиком было верно. С учителем маленькому Карлу повезло: М. Бартельс оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского.

Это помогло Гауссу закончить колледж, где он изучал Ньютона, Эйлера, Лагранжа. Уже там Гаус сделал несколько открытий в высшей математике, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел, Эйлеру это также не удалось.

С 1795 по 1798 год Гаусс учился в Гёттингенском университете. Это наиболее плодотворный период в жизни Гаусса. В 1796 г. Карл Фридрих Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n=2^{2^k}+1 (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Два открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет.

С 1799 года Гаусс — приват-доцент Брауншвейгского университета. Герцог продолжал опекать молодого гения. Он оплатил издание его докторской диссертации (1799) и пожаловал неплохую стипендию.

После 1801 года Гаусс, не порывая с теорией чисел, расширил круг своих интересов, включив в него и естественные науки.

Мировую известность Карл Гаусс приобрел после разработки метода вычисления эллиптической орбиты планеты по трем наблюдениям. Применение этого метода к малой планете Церера дало возможность вновь найти ее на небе после того, как она была утеряна.

В ночь с 31 декабря на 1 января известный немецкий астроном Ольберс, пользуясь данными Гаусса, обнаружил планету, которую назвали Церерой. В марте 1802 была открыта еще одна аналогичная планета – Паллада, и Гаусс тут же вычислил ее орбиту.

Свои методы вычисления орбит Карл Гаусс изложил в знаменитой Теории движения небесных тел (лат.Theoria motus corporum coelestium, 1809). В книге описан использованный им метод наименьших квадратов, и по сей день остающийся одним из самых распространенных методов обработки экспериментальных данных.

Иоганн Карл Фридрих Гаусс (нем. Johann Carl Friedrich Gau; 30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген) — немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков». Лауреат медали Копли (1838), иностранный член Шведской (1821) и Российской (1824) Академий наук, английского Королевского общества.

Биография

1777—1798 годы

Дед Гаусса был бедным крестьянином, отец — садовником, каменщиком, смотрителем каналов в герцогстве Брауншвейг. Уже в двухлетнем возрасте мальчик показал себя вундеркиндом. В три года он умел читать и писать, даже исправлял счётные ошибки отца. Согласно легенде, школьный учитель математики, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100.

Юный Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 50 × 101 = 5050 {\displaystyle 50\times 101=5050} . До самой старости он привык большую часть вычислений производить в уме.

С учителем ему повезло: М. Бартельс (впоследствии учитель Лобачевского) оценил исключительный талант юного Гаусса и сумел выхлопотать ему стипендию от герцога Брауншвейгского. Это помогло Гауссу закончить колледж Collegium Carolinum в Брауншвейге (1792—1795).

Гаусс некоторое время колебался в выборе между филологией и математикой, но предпочёл последнюю. Он очень любил латинский язык и значительную часть своих трудов написал на латыни; любил английскую и французскую литературу, которые читал в подлиннике. В возрасте 62 лет Гаусс начал изучать русский язык, чтобы ознакомиться с трудами Лобачевского, и вполне преуспел в этом деле.

В колледже Гаусс изучил труды Ньютона, Эйлера, Лагранжа. Уже там он сделал несколько открытий в теории чисел, в том числе доказал закон взаимности квадратичных вычетов. Лежандр, правда, открыл этот важнейший закон раньше, но строго доказать не сумел; Эйлеру это также не удалось. Кроме этого, Гаусс создал «метод наименьших квадратов» (тоже независимо открытый Лежандром) и начал исследования в области «нормального распределения ошибок».

С 1795 по 1798 год Гаусс учился в Гёттингенском университете, где его учителем был А. Г. Кестнер. Это — наиболее плодотворный период в жизни Гаусса.

1796 год: Гаусс доказал возможность построения с помощью циркуля и линейки правильного семнадцатиугольника. Более того, он разрешил проблему построения правильных многоугольников до конца и нашёл критерий возможности построения правильного n-угольника с помощью циркуля и линейки: если n — простое число, то оно должно быть вида n = 2 2 k + 1 {\displaystyle n=2^{2^{k}}+1} (числом Ферма). Этим открытием Гаусс очень дорожил и завещал изобразить на его могиле правильный 17-угольник, вписанный в круг.

С 1796 года Гаусс ведёт краткий дневник своих открытий. Многое он, подобно Ньютону, не публиковал, хотя это были результаты исключительной важности (эллиптические функции, неевклидова геометрия и др.). Своим друзьям он пояснял, что публикует только те результаты, которыми доволен и считает завершёнными. Многие отложенные или заброшенные им идеи позже воскресли в трудах Абеля, Якоби, Коши, Лобачевского и др. Кватернионы он тоже открыл за 30 лет до Гамильтона (назвав их «мутациями»).

Все многочисленные опубликованные труды Гаусса содержат значительные результаты, сырых и проходных работ не было ни одной.

1798 год: закончен шедевр «Арифметические исследования» (лат. Disquisitiones Arithmeticae), напечатан только в 1801 году.

В этом труде подробно излагается теория сравнений в современных (введённых им) обозначениях, решаются сравнения произвольного порядка, глубоко исследуются квадратичные формы, комплексные корни из единицы используются для построения правильных n-угольников, изложены свойства квадратичных вычетов, приведено доказательство квадратичного закона взаимности и т. д. Гаусс любил говорить, что математика — царица наук, а теория чисел — царица математики.

Карл Фридрих Гаусс (нем.Johann Carl Friedrich Gauß; 30 сәуір1777, Брауншвейг — 23 ақпан1855, Гёттинген) — ұлы неміс математигі, астрономы және физигі, Санкт-Петербург ғылым академиясының құрметті мүшесі (1824).

18 ғасырдың соңында Германиада бір сабақта мұғалім оқушыларына «1 — ден 100 ге дейінгі натурал сандардың қосындысын табуды» тапсырыпты. Оқушылардың біреуі: ізделген қосынды 5050-ге тең деп жауап беріпті. бұл оқушы кейіннен аты әлемге әйгілі болған Математиктер королі Карл Фридрих Гаусс екен.

ЕңбектеріӨңдеу

Оның еңбектері алгебраның, сандар теориясының, дифференциалдық геометрияның, тартылыс теориясының, электр және магнит құбылыстарының классикалық теориясының, геодезияның, теориялық астрономияның дамуына орасан зор ықпал етті.

Кез келген алгебралық теңдеудің кем дегенде бір түбірі болатындығы жөніндегі алгебраның негізгі теоремасын дәлелдеген (1799). Гаусс сондай-ақ, астрономия, ықтималдық теориясы, шексіз қатарлар теориясы, потенциалдар теориясы, т.б. салалар бойынша да іргелі еңбектер жазған, жоғары геоздезияның математикасы негізін қалаған. Ол өлшеу кезінде жіберілетін қателіктерді есептей отырып, ең кіші квадраттар тәсілін және 3 рет бақылау нәтижесінде планеталардың эллипстік орбитасын есептеу тәсілін ұсынған.

  • 1830 — 40 ж. неміс физигі В. Вебермен біріге отырып теориялық физикадан елеулі табысқа жетті. Сөйтіп электр магниттік бірліктердің абсолют жүйесін (қ. Бірліктердің СГС жүйесі) құрды.
  • 1833 ж. Германиядағы тұңғыш электр магниттік телеграфты құрастырды. Ол Н.И. Лобачевскийдің еңбектерінде дамытылған Евклидтік емес геометриялардың идеяларына ерекше мән берді.

Салу есептеріӨңдеу

Салу есептерді ежелгі математиктер еңбектері арасынан елеулі орын алған. Өйткені, бұл кезеңде барлық математикалық деректер сызба көмегімен геометриялық тілде негізделген. Сызғыш пен циркульді пайдаланып көпбұрыштарды, оның ішінде дұрыс көпбұрыштарды салу мәселесі немістің ұлы математигі Карл Гауссқа дейін өз шешімін таппай келді. Бұл мәселені тек 1801 жылы ғана К. Гаусс алгебралық жолмен толық шешті. Оның дәлелдемесі бойынша дұрыс n-бұрышты циркульді және сызғышты пайдаланып салу үшін n=2m. P1·…·P k, m€Z, m≥0, P1, …, P k2²+1, ал 7 мұндай түрде жазылмайды, яғни жетібұрышты циркулді және сызғышты пайдаланып салуға болмайды.[1]

ДереккөздерӨңдеу

  1. ↑Геометрия-жалпы білім беретін мектептің 8-сыныбына арналған оқулық (Ә. Н. Шыныбеков, Алматы «Атамұра» 2011)

Добавить комментарий

Закрыть меню