Нерешенные проблемы математики

8.2. Что называют математической моделью?

Всякое явление природы бесконечно в своей сложности. Проиллюстрируем это с помощью примера, взятого из книги В.Н. Тростникова «Человек и информация» (Издательство «Наука», 1970).

… Обыватель формулирует математику задачу следующим образом: «Сколько времени будет падать камень с высоты 200 метров?» Математик начнет создавать свой вариант задачи приблизительно так: «Будем считать, что камень падает в пустоте и что ускорение силы тяжести 9,8 метра в секунду за секунду. Тогда …»

Позвольте, — может сказать «заказчик», — меня не устраивает такое упрощение. Я хочу знать точно, сколько времени будет падать камень в реальных условиях, а не в несуществующей пустоте.

Хорошо, — согласится математик. — Будем считать, что камень имеет сферическую форму и диаметр… Какого примерно он диаметра?

Около пяти сантиметров. Но он вовсе не сферический, а продолговатый.

Тогда будем считать, что он имеет форму эллипсоида с полуосями четыре, три и три сантиметра и что он падает так, что большая полуось все время остается вертикальной. Давление воздуха примем равным 760 мм ртутного столба, отсюда найдем плотность воздуха

Если тот, кто поставил задачу на «человеческом» языке не будет дальше вмешиваться в ход мысли математика, то последний через некоторое время даст численный ответ. Но «потребитель» может возражать по-прежнему: камень на самом деле вовсе не эллипсоидальный, давление воздуха в том месте и в тот момент не было равно 760 мм ртутного столба и т.д. Что же ответит ему математик?

Он ответит: «Точное решение реальной задачи вообще невозможно. Мало того, что форму камня, которая влияет на сопротивление воздуха, невозможно описать никаким математическим уравнением; его вращение в полете также неподвластно математике из-за своей сложности. Далее, воздух не является однородным, так как в результате действия случайных факторов в нем возникают флуктуации колебания плотности. Если пойти ещё глубже, нужно учесть, что по закону всемирного тяготения каждое тело действует на каждое другое тело. Отсюда следует, что даже маятник настенных часов изменяет своим движением траекторию камня.

Короче говоря, если мы всерьез захотим точно исследовать поведение какого-либо предмета, то нам предварительно придется узнать местонахождение и скорость всех остальных предметов Вселенной. А это, разумеется, невозможно ….

Чтобы описать явление, необходимо выявить самые существенные его свойства, закономерности, внутренние связи, роль отдельных характеристик явления. Выделив наиболее важные факторы, можно пренебречь менее существенными.

Наиболее эффективно математическую модель можно реализовать на компьютере в виде алгоритмической модели — так называемого «вычислительного эксперимента» (см. [1], параграф 26).

Конечно, результаты вычислительного эксперимента могут оказаться и не соответствующими действительности, если в модели не будут учтены какие-то важные стороны действительности.

Итак, создавая математическую модель для решения задачи, нужно:

  1. выделить предположения, на которых будет основываться математическая модель;
  2. определить, что считать исходными данными и результатами;
  3. записать математические соотношения, связывающие результаты с исходными данными.

При построении математических моделей далеко не всегда удается найти формулы, явно выражающие искомые величины через данные. В таких случаях используются математические методы, позволяющие дать ответы той или иной степени точности.

Существует не только математическое моделирование какого-либо явления, но и визуально-натурное моделирование, которое обеспечивается за счет отображения этих явлений средствами машинной графики, т.е. перед исследователем демонстрируется своеобразный «компьютерный мультфильм», снимаемый в реальном масштабе времени. Наглядность здесь очень высока.

  • Теорема Гёделя о неполноте

    Всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.

  • Бога нет, если есть природа

    Анатолий Вассерман

    В 1930 году Курт Гедель доказал две теоремы, которые в переводе с математического языка на человеческий означают примерно следующее: Любая система аксиом, достаточно богатая, чтобы с ее помощью можно было определить арифметику, будет либо не полна, либо противоречива. Не полная система – это значит, что в системе можно сформулировать утверждение, которое средствами этой системы нельзя ни доказать, ни опровергнуть. Но Бог, по определению, есть конечная причина всех причин. С точки зрения математики это означает, что введение аксиомы о Боге делает всю нашу аксиоматику полной. Если есть Бог, значит любое утверждение можно либо доказать, либо опровергнуть, ссылаясь, так или иначе, на Бога.

    Но по Геделю полная система аксиом неизбежно противоречива. То есть, если мы считаем, что Бог существует, то мы вынуждены прийти к выводу, что в природе возможны противоречия. А поскольку противоречий нет, иначе бы весь наш мир рассыпался от этих противоречий, приходиться прийти к выводу, что существование Бога не совместимо с существованием природы.

  • Теорема Гёделя о неполноте

    Сосинский А. Б.

    Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции в рамках проекта «Публичные лекции "Полит.ру"» раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.

  • Теорема Гёделя о неполноте и четыре дороги, ведущие к ней

    Успенский В. А.

    Лекции летней школы «Современная математика», г. Дубна.

  • Теорема Гёделя — синтаксическая версия

    Успенский В. А.

    Лекция посвящена синтаксической версии Теоремы Гёделя о неполноте. Сам Гёдель доказал синтаксическую версию, используя более сильное, чем непротиворечивость, предположение, а именно так называемую омега-непротиворечивость.

  • К проблеме "вычислимости" функции сознания

    Иванов Е. М.

    Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы Курта Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом.

  • Принцесса или тигр?

    Смаллиан Рэймонд

    Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
  • Десять великих идей науки. Как устроен наш мир

    Питер Эткинз

    Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
  • Пределы доказуемости

    Грегори Чейтин

    Из идей сложности и случайности, впервые высказанных Готфридом Лейбницем в его «Рассуждении о метафизике» (1686), и их подтверждения в современной теории информации следует, что невозможно создать «самую общую теорию всего» в математике.

  • Компьютерные доказательства

    Лев Беклемишев

    Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Об этом рассказывает доктор физико-математических наук Лев Беклемишев.

  • Проблемы 2000 года: гипотеза Ходжа

    Архив

    автор : Сергей Николенко   14.10.2005

    Можно ли свести изучение множества решений полиномиального уравнения к изучению более простых объектов? Об этом нe только гипотеза Ходжа. Из подобных вопросов выросла вся алгебраическая геометрия.

    Можно ли свести изучение множества решений полиномиального уравнения к изучению более простых объектов? Об этом нe только гипотеза Ходжа. Из подобных вопросов выросла вся алгебраическая геометрия.

    Писать популярную статью о гипотезе Ходжа — задача неблагодарная. Пишешь о гипотезе Римана — к твоим услугам и богатая история вопроса, и интересные взаимосвязи с массой других областей, и долгая история численных экспериментов, поднимающихся уже в высоты совершенно заоблачные. Пишешь об уравнениях Навье-Стокса — тоже затруднений не испытываешь: разве не интересно узнать, как вода течет и воздух движется? Да и сами уравнения Навье-Стокса вовсе не выглядят зубодробительными и доступны человеку, прошедшему курс высшей математики, даже если он на лекциях играл в крестики-нолики и экзамен сдал на тройку. А вот алгебраическая геометрия, смысл и задачи которой, может, и нетрудно понять, но преподавание которой не налажено практически нигде[Говорю по собственному опыту. На математико-механическом факультете СПбГУ алгебраической геометрией занимается множество преподавателей (ибо наука очень важная и популярная), но в базовые курсы она не входит и преподается исключительно в рамках спецкурсов и в личных беседах. В связи с этим — спасибо Александру Леонидовичу Смирнову за беседу и лекцию, которые помогли мне при написании этой статьи], — совсем другое дело… Поэтому предупреждаю сразу: в этой статье даже толково сформулировать гипотезу Ходжа не получится. Поговорим мы в основном об алгебраической геометрии — что это, зачем и куда оно движется.

    Алгебраическая геометрия

    Всем известно, что полиномиальные уравнения с одной переменной решаются по явным формулам — вплоть до четвертой степени. Для более высоких — нет. А ведь уравнения от одной переменной — это еще цветочки. Надо что-то делать и с уравнениями от многих переменных, что принципиально сложнее: ведь у них, как правило, бесконечно много решений. Алгебраическая геометрия возникла из задач описания структуры решений таких уравнений.

    Приведу пример довольно сложного для анализа уравнения с тремя переменными: xn+yn–zn=0, где x, y, z — целые числа (его обычно переписывают с двумя переменными — xn+yn–1=0, но разрешают переменным принимать рациональные значения). Структура решений этого уравнения известна: у каждого из решений одна из компонент — x, y или z — равна 0. Однако для установления этого факта потребовалось более трехсот пятидесяти лет: от заметки на полях «Арифметики» Диофанта до доказательства Эндрю Уайльса (Andrew Wiles, см. врезку).

    Алгебраические геометры и Филдсовская премия

    Как известно, математикам не дают Нобелевскую премию (говорят, у Нобеля были весьма интимные счеты с одним математиком — впрочем, это всего лишь слухи). Возмущенный этой несправедливостью, канадский математик Джон Чарльз Филдс (John Charles Fields) предложил учредить для математиков отдельную награду, которая теперь так и называется — Филдсовская премия (по-английски — Fields Medal; почему при переводе медаль зачастую становится премией и так и попадает в словари, мне выяснить не удалось).

    Впервые она была присуждена в 1936 году, и всего было выдано 45 медалей представителям самых разных областей математики. Многие из них занимались среди прочего алгебраической геометрией. Но даже медалей, выданных исключительно за достижения в алгебраической геометрии, набрался целый десяток — кажется, больше, чем в любой другой области математики. Вот имена этих лауреатов:

    1954: Кунихико Кодаира;

    1966: Александр Гротендик (Alexander Grothendieck; о его жизни можно писать отдельную статью, и преувлекательно выйдет — например, говорят, что сейчас он живет отшельником где-то в Пиренеях, но точно никто ничего об этом не знает; а в математике это фигура примерно уровня Эйнштейна в физике);

    1970: Хейсуке Хиронака;
    1974: Дэвид Мамфорд (David Mumford);

    1978: Даниэль Квиллен (Daniel Quillen)
    и Пьер Делинь (Pierre Deligne);

    1986: Герд Фалтингс (Gerd Faltings);

    1990: Владимир Дринфельд и Шигефуми Мори;

    2004: Лоран Лаффорг (Laurent Lafforgue) и Владимир Воеводский.

    У Филдсовской премии есть одно строгое ограничение, которого нет у Нобелевской: лауреат должен быть не старше сорока лет. Именно это ограничение не позволило вручить заслуженную медаль Эндрю Уайльсу (Andrew Wiles), который доказал великую теорему Ферма. Точнее говоря, он доказал более общее утверждение о связи модулярных и эллиптических форм — гипотезу Таниямы-Шимуры. История доказательства теоремы Ферма тоже на редкость интересна — Эндрю Уайльс несколько лет работал над проблемой, никому не рассказывая о том, чем занимается… Советую прочесть книгу о теореме Ферма (rrc.dgu.ru/res/mikel.altonika.ru/fermat/flt.htm). Если отвлечься от постоянных лирических отступлений на математические забавности, к теореме Ферма имеющие весьма опосредованное отношение, чтиво очень интересное.

    Алгебраическая геометрия в современной математике играет ведущую роль. Ее проблемы стимулируют развитие и алгебры, и геометрии с топологией, и теории чисел, и многих других отраслей математического знания. Из семи «задач на миллион» три имеют непосредственное отношение к алгебраической геометрии — гипотеза Ходжа, гипотеза Берча-Суиннертон-Дайера и гипотеза Римана. Фактически алгебраическая геометрия — самый популярный и быстро развивающийся фронтир сегодняшней «чистой математики» (если не относить к чистой науке вопросы теоретической информатики).

    Инварианты и гипотеза Ходжа

    Центральное понятие, предопределяющее структуру подавляющего большинства исследований в алгебраической геометрии, — это понятие инварианта. Идею инвариантов понять легко. Предположим, что есть два объекта (в данном случае — два множества решений тех или иных уравнений), и нужно выяснить, равны ли они. Сделать это очень сложно, если вообще возможно, — как сравнивать? Но можно установить некоторые свойства объектов, и если эти свойства окажутся не идентичными, то и исходные объекты, очевидно, не равны. Например, проверить, совпадают ли два текста, можно, сравнив их объем.

    Если размер текстов отличается — в них можно и не заглядывать. В алгебраической геометрии одними из простейших инвариантов являются размерность или связность искомого множества.

    Обратное, разумеется, неверно: из равенства двух инвариантов нельзя ничего заключить о равенстве исходных объектов. Но и такое частичное знание — уже хорошо. А полное счастье настанет, если все же удастся доказать обратное утверждение (иными словами, если избранный набор инвариантов будет однозначно задавать исходный объект). Гипотеза Ходжа — как раз одно из таких заманчивых утверждений. Если она окажется верной, изучение большого и сложного класса алгебраических многообразий (так называют множества, составленные из кусочков, каждый из которых является множеством решений каких-либо полиномиальных уравнений) фактически сведется к изучению гораздо более простых объектов.

    Теперь о текущем статусе гипотезы. В предыдущих статьях мы говорили о гипотезе Римана и уравнении Навье-Стокса. В гипотезу Римана верят все математики. В единственность решения уравнений Навье-Стокса — тоже (по крайней мере, при достаточных для практических применений условиях). Гипотеза Ходжа выбивается из этого ряда. Долгое время верили, что она верна — но доказать это никак не удавалось. В последние годы многие математики предположили, что доказательство не удается найти просто потому, что гипотеза неверна — но контрпримеров пока построить тоже не удалось. Никаких численных экспериментов в этой задаче провести невозможно. Утверждение гипотезы доказано для ряда частных случаев, но на то они и частные. Если же контрпример будет построен, вряд ли он будет иметь очень простой вид. В общем, гипотеза Ходжа пока что открыта со всех сторон.

  • Иноходец. Урок Перельмана

    Этот фильм — первая серьезная попытка на телевидении разобраться, какие бури движут этим человеком и что именно он сделал для русской и мировой науки. А вывод, почему же Перельман не взял свой миллион, зритель уже сделает сам…

  • Парадоксы бесконечных множеств

    Представьте отель с бесконечным числом номеров. Приезжает автобус с бесконечным числом будущих постояльцев. Но разместить их всех — не так-то просто.

    Это бесконечная морока, а гости бесконечно уставшие. И если справиться с задачей не удастся, то можно потерять бесконечно много денег! Что же делать?

  • Математик и наставник Григория Перельмана Сергей Рукшин рассказал, в чем ошибки реформы российского образования

    «Ломоносовых больше не будет»

  • Великие безумцы

    Гении Леонардо да Винчи, Бах, Ван Гог, Достоевский, Эйнштейн, Перельман – люди, которые меняют наш взгляд на мир. Среди них нет ни одного «нормального» с точки зрения обычного человека. Почему гениальности часто сопутствует безумие? Это загадка, которую до сих пор не удалось разгадать.
  • О лотереях

    Игра эта давно приобрела массовый характер и стала неотъемлемой частью современной жизни. И хотя лотерея всё больше расширяет свои возможности, многие люди по-прежнему видят в ней лишь способ обогащения. Пусть и не бесплатный и не надёжный. С другой стороны, как заметил один из героев Джека Лондона, в азартной игре нельзя не считаться с фактами — людям иногда везёт.
  • Брайан Дэвис: «Куда идет математика?»

    На протяжении тысячелетий считалось, что математика открывает неопровержимые вечные истины. Множество замечательных математических утверждений, таких как теоремы евклидовой геометрии, верны в наши дни, точно так же, как и две тысячи лет назад. И тем не менее в XX веке математика пережила три глубоких кризиса, которые существенно меняют статус математического исследования.

  • Геометрия мыльных пузырей до сих пор озадачивает математиков

    Игорь Иванов

    Как соединить два мыльных пузыря, чтобы минимизировать их суммарную площадь поверхности (включая перегородку)? Ответ на этот вопрос интуитивно очевиден, но строгое математическое решение этой задачи было дано лишь в 2000 году. Тот же вопрос для трех и более пузырей до сих пор остается открытым. Немногим лучше обстоит дело и в плоском случае. Несмотря на все достижения математики, геометрия пузырьковых кластеров остается очень сложной задачей.

  • Фракталы в природе

    Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? Существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны.

  • Математики заинтересовались структурой подсолнухов

    Математики из Университета Аризоны разработали модель, которая позволяет объяснить особую спиральную структуру, которая часто встречается в живой природе — у подсолнухов, артишоков, капусты и других растений.
  • Решена задача о непериодичном замощении плоскости фигурами одной формы

    Предложен вариант непериодичной мозаики, покрывающей плоскость, в котором используются плитки одной формы, но двух различных раскрасок.

  • Формула Эйлера названа самой знаменитой формулой в математике, в которой используются все основные математические константы.

     

    • e — это число Эйлера и основание натурального алгоритма.
    • i — мнимая единица, которая удовлетворяет равенству  i2 = -1
    • π — число PI, отношение длины окружности к ее диаметру.
    • 0 — нейтральным элементом или аддитивная единица.
    • 1 — положительное число, которое равно своему обратному

     

    Тождество Эйлера было названо «самой красивой теоремой в математике» во время опроса проведенного в 1990 году. Уравнение Эйлера было названо «великим уравнения истории» в ходе опроса, проведенного Physics World в 2004 году.

    Многие видели в этой формуле символ единства всей математики, ибо в ней «:

    • 1 представляет арифметику;
    • i — алгебру;
    • π — геометрию;
    • e — анализ.

    Добавить комментарий

    Закрыть меню