Передача по оптоволокну

IEEE 802.3, также известный в узких кругах как Ethernet, сформировал рабочую группу, цель которой – выйти за пределы скорости 100Гбит/с.

О первых результатах работы группы можно будет узнать уже в этом году. В проекте заинтересованы такие заказчики как Facebook и Google, которые ждут не дождутся более скоростных сетей и лоббируют это разработку, желая закончить ее уже к 2013 году. Им противостоят поставщики электроники, которые хотят сначала добиться скорости в 400Гбит/с, а уж потом двигаться дальше.

Несложно догадаться, почему же так расходятся мнения по поводу скорости, которой нужно добиваться. Facebook и Google нужно столько скорости, сколько они только могут заполучить, и как можно быстрее. По другую сторону баррикад поставщики электроники хотят получить стандарт, который был бы приемлем не только для крупных игроков (ввиду своей стоимости, вероятно), но и для обычных пользователей.

И поэтому поставщики продвигают идею 400-гигабитных сетей, ведь они хотят продавать оборудование не только Facebook и Google, но и нам с вами.

Результат этой борьбы интересов трудно предсказать заранее. Более точно можно будет что-то сказать только ближе к следующему году. Но одно ясно и не подлежит сомнению: обычные пользователи только выиграют от высоких скоростей, даже если терабитные сети придут в квартиры и дома через много лет после того, как их внедрят крупные компании. Ну и, конечно, чем быстрее будут сети передачи данных, тем больше будет облачных сервисов. В том числе и от Apple.

Преимущества оптоволоконного интернета

По мнению специалистов, на ближайшие несколько лет наиболее эффективную передачу данных в Сети будет обеспечивать оптоволокно, и мы будем пользоваться преимущественно оптоволоконным Интернетом. Его уже широко используют в Западной Европе и США, а также в РФ в местах плотной высотной застройки. Но свойства волоконно-оптического кабеля позволяют сегодня подключить к качественному высокоскоростному Интернету и загородный дом.

Что такое оптоволоконный Интернет

Для его подключения используются оптические волноводы. Сигнал движется по ним в виде световой волны с большой скоростью(со скоростью света). Поскольку сегодня вся передающая и принимающая сигналы аппаратура – электронная, необходимы преобразователи электронных сигналов в оптические и наоборот. Такие преобразователи – оптоволоконные модемы – давно разработаны, широко и успешно используются.

Кабель из оптоволокна – уникальный продукт высоких технологий

Технология производства оптоволокна берет начало в 50-тых годах ХХ века и до сих пор остается сложной и трудоемкой. Поэтому стоимость оптоволоконного кабеля не может быть низкой. Зато с его помощью мы получили быстрый Интернет и возможность использовать его на обширных территориях. Огромная пропускная способность оптического кабеля позволяет передавать большой объем информации в единицу времени.

Оптический сигнал в нем почти не искажается и не ослабевает при передаче на большие расстояния.

Кроме того, материал, из которого делается стекловолокно, – кварц – очень легкий, долговечный, мало подвержен атмосферным воздействиям и влиянию электромагнитных полей. Химическая инертность делает его пожаробезопасным. К недостаткам стекловолокна относятся:

  • сложность ремонта, из-за чего при локальном повреждении кабеля иногда приходится менять его полностью;
  • сложность согласования с электрическими цепями(нужны модемы).

К сожалению, эти сложности объективно приводят к повышению стоимости подключения оптоволоконных систем связи.

Преимущества оптоволоконного Интернета

Замечательные свойства оптического кабеля обусловили существенные преимущества оптоволоконных систем связи относительно традиционных кабельных или DSL технологий:

  • очень высокая скорость передачи информации, в том числе и при пиковых нагрузках на сеть вечером и в выходные;
  • высокая помехозащищенность;
  • практически отсутствует задержка сигнала – задержка в единицы мс, тогда как для 3G-интернета значения прядка 100мс, а для спутникового могут достигать 1000мс;
  • затруднен несанкционированный доступ к передаваемой информации – врезка, индукционное считывание и другие угрозы;
  • возможность подключения видеонаблюдения, охранных систем, IP-телефонии, интерактивного телевидения и т. д.;
  • возможность прокладки оптоволоконного кабеля на большие расстояния;
  • химическая устойчивость стекловолокна в агрессивных средах;
  • хорошая гибкость кабеля;
  • небольшие габариты и вес;
  • защищенность от открытого огня и взрыва;
  • долговечность.

По данным«Point Topic», общее количество тех, кто предпочел оптоволоконный Интернет, уже сегодня превышает число пользователей кабельного. Перечисленные преимущества оптоволоконных систем связи рождают уверенность, что в ближайшие годы весь Интернет в развитых странах станет оптоволоконным и доступным для жителей любого населенного пункта. В России свой вклад в это вносит компания«Асарта».

1.2. Сравнение оптоволоконных и кабельных систем

Без сомнения, оптоволоконная технология станет в будущем главным средством передачи информации. Она является одной из причин массового роста международных телекоммуникаций и эффекта «сжатия планеты». На основе этой технологии Интернет смог стать тем неоценимым информационным средством, каким он сегодня является. Однако вопреки распространенному мнению, это не панацея. У оптоволоконных систем все еще есть множество ограничений и препятствий, которые надо преодолеть. Перед тем как начать обсуждать теорию оптоволоконной передачи, сравним традиционные и оптоволоконные кабели и оценим их достоинства и недостатки.

1.2.1. Полоса пропускания

Оптоволокно

Сегодня у оптоволоконных кабелей огромная полоса пропускания со скоростями передачи до 40 Гбит/с, действующими уже сегодня, и свыше 100 Гбит/с, ожидающимися в ближайшем будущем. Факторами, ограничивающими рост скоростей передачи, в настоящее время являются: во-первых, большое по сравнению с периодами импульсов время ответа источников и детекторов для высоких скоростей передачи данных; во-вторых, близость длины волны света к периоду импульса, вызывающая проблемы дифференцирования в детекторах. Методы мультиплексирования нескольких длин волн в одном волокне (называемые спектральным уплотнением (WDM, wave division multiplexing) увеличивают общую скорость передачи по одному волокну до нескольких Тбит/с.

Следующее сравнение позволит почувствовать, что это означает в терминах передачи информации: при оптоволоконной связи на скорости примерно 1 Гбит/с можно одновременно передавать свыше 30 ООО сжатых телефонных разговоров. При связи на скорости 30 Гбит/с можно одновременно передавать до 1 миллиона телефонных разговоров по единственному стеклянному волокну!

Кабели

Коаксиальные кабели диаметром до 8 см могут обеспечить скорости передачи до 1 Гбит/с на расстояниях до 10 км. Ограничивающим фактором является очень высокая стоимость меди.

В настоящее время продолжается важное исследование по увеличению скорости передачи через кабели с витыми парами. Сегодня во многих локальных сетях скорости 100 Мбит/с являются вполне обычными. Доступны также коммерческие системы, действующие на скоростях до 1 Гбит/с. После успешных лабораторных испытаний на скоростях 10 Гбит/с соответствующая продукция готовится к коммерческому выпуску. Причина такой активной деятельности в этой области кроется в избытке инфраструктуры с уже , установленными кабелями с витой парой, что позволяет значительно сэкономить на рытье траншей, прокладке каналов и укладке новых оптоволоконных кабелей. По этой причине технология кабелей с витой парой в настоящее время успешно конкурирует с оптоволоконной технологией, поскольку обе они имеют множество общих приложений.

1.2.2. Помехи

Оптоволокно

На оптоволоконные кабели совершенно не воздействуют электромагнитные помехи (EMI), радиочастотные помехи (RFI), молнии и скачки высокого напряжения. Они не страдают от проблем емкостных или индуктивных сопряжений. При правильном проектировании на оптоволоконные кабели не должны воздействовать электромагнитные импульсы от ядерных взрывов и фоновой радиации. (Это известие утешит большую часть населения после ядерной войны!)

В дополнение к этому факту оптоволоконные кабели не создают никаких электромагнитных или радиочастотных помех. Это свойство очень ценно для производства вычислений, обработки видео- и аудиоинформации, где все более важным для возросшего качества воспроизведения и записи становится окружение с низким шумом.

Кабели

На обычные кабели влияют внешние помехи. В зависимости от типов кабелей и степеней их экранирования, они в разной степени подвержены электромагнитным и радиопомехам через индуктивные, емкостные и резистивные связи. Системы связи на основе традиционных кабелей полностью выходят из строя под действием электромагнитных импульсов ядерных взрывов.

Обычные кабели также излучают электромагнитные волны, что может вызвать помехи в других кабельных системах связи. Объем излучения зависит от величины передаваемого сигнала и качества экрана.

1.2.5. Электроизоляция

Оптоволокно

Оптоволоконные кабели обеспечивают полную гальваническую развязку между обоими концами кабеля. Непроводимость волокон делает кабели нечувствительными к скачкам напряжения. Это устраняет электромагнитные и эфирные помехи, которые могут быть вызваны контурами заземления, синфазными напряжениями, а также смещениями и короткими замыканиями потенциала земли. Оптоволоконный кабель действует как длинный изолятор. Поскольку оптические волокна не излучают волны и не подвержены помехам, еще одним их преимуществом является отсутствие взаимного влияния кабелей (то есть воздействия излучения одного кабеля связи на другой, проложенный рядом с ним).

Кабели

Традиционные кабели, просто работая по своему предназначению, предоставляют электрическое соединение между своими концами. Следовательно, они восприимчивы к электромагнитным и эфирным помехам от контуров заземления, синфазных напряжений и смещений потенциала земли. Они также подвержены проблемам взаимного влияния.

1.2.4. Расстояния передачи

Оптоволокно

Для простых дешевых оптоволоконных систем возможны расстояния между повторителями до 5 км. Для высококачественных коммерческих систем теперь без труда доступны расстояния между ‘повторителями до 300 км. Были разработаны системы (без использования повторителей) на расстояния до 400 км. В лабораторных условиях достигнуты расстояния, близкие к 1000 км, но на рынке они пока недоступны. Одна европейская компания заявила, что в настоящее время разрабатывает оптоволоконный кабель, который можно проложить вдоль земного экватора и без всяких повторителей по нему можно будет передавать4сигнал с одного его конца на другой! Как такое возможно? При использовании слегка радиоактивной оболочки входящие фотоны с низкой энергией возбуждают в этой оболочке электроны, которые, в свою очередь, излучают фотоны с большей энергией. Таким образом возникает некоторая форма автоусиления. В следующих главах читателю будут разъяснены использованные термины.

Кабели

На рынке кабелей с витой парой на скорости передачи 4 Мбит/с доступны расстояния между повторителями до 2,4 км.

В случае коаксиальных кабелей на скоростях менее 1 Мбит/с между повторителями возможны расстояния до 25 км.

1.2.5. Размер и вес

Оптоволокно

По сравнению со всеми другими кабелями для передачи жданных, оптоволоконные кабели очень малы в диаметре и чрезвычайно легки. Четырехжильный оптоволоконный кабель весит примерно 240 кг/км, а 36-основный оптоволоконный кабель весит примерно лишь на 3 кг больше. Из-за своих небольших по сравнению с традиционными кабелями с такой же пропускной способностью размеров их обычно проще устанавливать в существующих условиях, а время установки и стоимость в общем ниже, поскольку они легки и с ними проще работать.

Кабели

Традиционный кабель может весить от 800 кг/км для кабеля с 36 витыми парами до 5 т/км для высококачественного коаксиального кабеля большого диаметра.

Вернуться   •   Содержание книги   •   Скачать   •   Дальше

Оборудование передачи телефонии по оптоволокну

Для передачи телефонных линий на большие расстояния без установки дополнительной мини-АТС используются комплекты передачи по ВОЛС (волоконно-оптическим линиям связи). Один приемо-передатчик комплекта передачи телефонии устанавливается непосредственно в узле связи и подключается к существующей АТС.

Второй приемо-передатчик телефонной линии по ВОЛС устанавливается на удаленном объекте, требующим телефонизации. Каких либо других устройств, конвертеров, шлюзов или дополнительных мини-АТС не требуется.

Купив комплект передачи телефонных линий по оптоволокну (ВОЛС) Вы решаете задачу телефонизации удаленного объекта с минимальными затратами и без дополнительной установки мини-АТС. Комплекты приемо-передатчиков телефонии по оптике не требуют настройки и просты в эксплуатации.

 

Схема передачи телефонных линий по оптоволокну

 

 

Основные модели приемопередатчиков телефоннов по оптике (опционально с Ethernet)

Количество каналов телефонных линий

Модель

1.

1-но канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T1-20

2.

2-х канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T2-20

3.

4-х канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T4-20

4.

8-ми канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T8-20

5.

16-ти канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T16-20

6.

30-ти канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T30-20

7.

60-ти канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T60-20

8.

90-то канальные телефонные оптические передатчик и приемник, 20км, SM

NO-T90-20

9.

Комплект передачи 1-ой телефонных линий + Ethernet 10/100М по оптоволокну,  SM, 20км

NO-Z1PE-20

10.

Комплект передачи 2-х телефонных линий + Ethernet 10/100М по оптоволокну,  SM, 20км

NO-Z2PE-20

11.

Комплект передачи 4-х телефонных линий + Ethernet 10/100М по оптоволокну,  SM, 20км

NO-Z4PE-20

12.

Комплект передачи 8-ми телефонных линий + Ethernet 10/100М по оптоволокну,  SM, 20км

NO-Z8PE-20

Добавить комментарий

Закрыть меню