Печать органов на 3d принтере

TurchАпрель 2nd, 2015

3D-принтеры сегодня используются во многих сферах нашей жизни, позволяя создавать различные декоративные элементы для интерьера, протезы для органов человека, дизайнерские украшения или даже шоколад. Но наука не стоит на месте, и сегодня уже планируется 3D-печать органов из биологического материала. Это самый настоящий революционный прорыв, поскольку донорские органы – большой дефицит.

Особенности печати органов на 3д-принтере

Создание функционирующих органов человека посредством 3D-печати позволило бы решить самую главную проблему – нехватку этих самых органов, чтобы спасти миллионы пациентов по всему миру. Идея о выращивании человеческих органов возникла еще в прошлом веке, но до момента появления биопечати воплотить их в реальность не представлялось возможным. В Институте регенеративной медицины первыми стали создавать синтетические строительные блоки для выращивания мочевого пузыря человека на основе 3D-печати. Однако первая печать появилась только в 2000-е годы.

Первый 3D-принтер для биопечати: Organovo

Компания Organovo в 2010 году первой запустила печать человеческих органов. Сегодня специалисты компании активно занимаются попытками создать образцы печени, но их пока нельзя использовать для трансплантации. 3д печать органов по степени сложности превышает обычные устройства для трехмерной печати, однако общих черт у этих двух процессов немало:

  • Применяются картриджи и печатающие головки,
  • Вместо чернил используется биоматериал,
  • Формирование органа ведется послойно на специальной рабочей поверхности.

Однако перед печатью каждая деталь проходит ряд проверок. Для начала сам пациент проходит процедуры КТ- сканирования и МРТ. Полученные результаты обрабатываются посредством компьютера, после чего создается макет – именно он используется в принтере, чтобы определить места и способы нанесения клеток. Биологические принтеры работают на основе человеческих клеток того органа, синтез которого проводится, или на основе стволовых клеток. Цельная структура органа получается благодаря специальному скрепляющему веществу, которое имеется в картридже.

Сразу после завершения печати созданный орган помещается в специальные условия в инкубаторе – это необходимо для того, чтобы клетки начали деление и синхронизацию в совместной работе.

В чем проблемы?

Биопринтер для печати человеческих органов Organovo – это современное устройство, за которым большое будущее.

Созданные путем 3D-печати органы заставили приживаться

Однако имеется ряд проблем, связанных с этим нелегким и трудоемким процессом:

  1. Дефицит материала, который можно было бы использовать для производства человеческих органов.
  2. Сложность и в прорастании клеток вне тела человека: наши органы устроены очень сложно, поэтому наладить работу искусственного органа очень трудно.
  3. Ограниченность технических возможностей. Во-первых, не хватает качественного и мощного оборудования, позволяющего создавать максимально приближенные к натуральным человеческие органы. Во-вторых, очень трудно заставить клетки работать слаженно, поскольку требуется производство еще и кровеносных сосудов – именно они способствуют правильному функционированию органов. Кстати, первые шаблоны кровеносных сосудов уже были произведены в университете Бригама Янга. Для их создания использовался линейный полисахарид агарозы.

Особенности работы биологического 3D-принтера

Печать органов – процесс непростой, поэтому и само устройство имеет ряд особенностей. Биопринтер хорош тем, что он работает без использования поддерживающей основы. Organovo работает на основе стволовых клеток, которые получают из костного мозга. Именно эти клетки формируются в маленькие капельки диаметров от 100 до 500 микрон, которые хорошо держат форму и позволяют вести качественную печать. Суть этого процесса в следующем: первой печатающей головкой выкладываются капельки с клетками в нужной последовательности, а вторая распыляет поддерживающее основание. В этом качестве используется гидрогель на основе сахарной пудры, который не вступает во взаимодействие с клетками. После завершения печати полученная структура оставляется на пару дней, чтобы произошло сцепление капель друг с другом.

Печать органов на 3d принтере возможна с применением других материалов и поддерживающих основ. Например, клетки печени можно нанести на заранее подготовленное основание в виде этого органа.

Какие перспективы?

3D-технологии печати сегодня очень популярны, в том числе и в сфере создания человеческих органов. Однако пока печать органов на принтере имеет ряд проблем. Допустим, созданная компанией Organovo печень была полностью идентична человеческой, выполняла все ее функции, однако синтезированный орган смог просуществовать около 40 дней. Не так давно были созданы посредством 3D-печати клапаны сердца, вены, а вот печать полноценного сердца пока невозможна. Сегодня все больше разговоров о создании 3D-почек, которые можно было бы трансплантировать человеку.

Ученые Organovo считают, что создавать органы можно и без поддерживающей структуры, поскольку живые клетки могут самоорганизоваться. При этом они отмечают, что 3D-печать органов имеет четыре уровня сложности:

  1. Самые простые для печати – плоские структуры из одного вида клеток, например, кожа.
  2. Вторые по степени сложности – трубчатые структуры, например, кровеносные сосуды.
  3. На третьем уровне сложности полые органы (мочевой пузырь или желудок).
  4. И самые сложные для печати органы – печень, почки и сердце.

Кроме того, технология 3D-печати органов может применяться и в других сферах. Например, посредством 3D-сканирования можно создавать кости, чтобы вернуть человеку возможность подвижного образа жизни. Биологический принтер позволяет создать структуры, поддерживающие скелет: это способствует быстрому излечению пациентов. На созданных посредством 3D-печати органах можно тестировать лекарства, чтобы выявить их побочные эффекты.


Человеческие органы «печатающиеся» на 3D-принтере уже сегодня

.

Биопринтинг — технология будущего

Биопринтинг – это печать тканей и органов человека с помощью медицинских 3D-принтеров. Еще несколько лет тому назад эта технология казалась немыслимой, нереальной, фантастической, но уже сегодня она бурно развивается в двенадцати странах мира, в том числе и в России.

На международном форуме «Открытые инновации» российская лаборатория «3D Bioprinting Solutions» представила свою разработку – первый отечественный биопринтер FABION для печати тканей и органов из тканевых сфероидов.

Руководитель лаборатории, профессор Владимир Миронов

Руководителем лаборатории является один из основателей биопринтинга в России, признанный авторитет в этой области, профессор Университета Вирджинии (США) Владимир Миронов. Персонал лаборатории состоит из квалифицированных биоинженеров, прошедших стажировку в ведущих научных центрах мира. «Опыт нашей лаборатории показывает, что российские головы и руки не так плохи», – шутит Миронов и буквально на глазах начинает генерировать идеи использования биопринтинга, параллельно объясняя суть технологии.

Сущность биопечати

Технология трехмерной печати за последние годы была отработана и поставлена на коммерческие рельсы. Медицинский вариант 3D-печати – биопечать органов – пока развивается относительно медленно, но это временное явление. В основу технологии положена идея формирования тканей и органов из особых клеточных кластеров (сфероидов), которые последовательно распыляются 3D-принтером на биобумагу (гидрогель). Клетки удерживаются внутри таких кластеров благодаря клеточной адгезии. Формирование органа происходит в 3D-принтере, который выстреливает сфероидами по гидрогелю словно чернилами.

«Каждый из нас на этапе эмбрионального развития имел две аорты, которые впоследствии превратились в одну. Следовательно, слияние является нормальным процессом развития, – поясняет Владимир Миронов. – Наше устройство использует способность эмбрионов к слиянию тканей. Это не магия, это эволюция в микромасштабе».

Первый отечественный биопринтер FABION

Сначала биоинженеры создают объемную цифровую модель будущего органа с множеством тончайших срезов, после чего готовая модель передается на принтер, который помещает сфероиды в гидрогель в соответствии с заданным программой алгоритмом.

Тканевые сфероиды, расположенные в вертикальной и горизонтальной плоскости, под действием сил поверхностного натяжения, миграции и перегруппировки сливаются, словно капли масла в воде. В результате формируется трехмерная основа.

Биочернила для медицинской печати культивируются для каждого органа отдельно, из стволовых клеток пациента. Три группы российских ученых из Москвы, Санкт-Петербурга и Новосибирска уже научились выделять из подкожного жира индуцированные полипотентные стволовые клетки.

Технология, разработанная в России, выгодно отличается от зарубежных аналогов тем, что обходится без донорских органов, клеточного материала и каркасов. Самое сложное на современном этапе развития биопринтинга – обеспечить стерильные условия процесса. Биопринтер помещают в стерильный бокс, в котором создается оптимальная среда для работы с живыми клетками. Напечатанные органы могут несколько дней сохранять свою жизнеспособность в перфузионном биореакторе, в специальном растворе.

Возможности биопечати

С помощью 3D-биопринтеров ученым уже удалось напечатать фрагменты кожи, хрящи и сосуды, и испытать их на животных. Для создания более сложных органов необходимо формирование сосудистой сетки (васкуляризация). Ученые планируют встроить сосудистую сетку в орган прямо на этапе биопечати с использованием все тех же тканевых сфероидов. Свойства сфероидов зависят от клеток, из которых они созданы. Если это клетки эпителия, то сфероиды становятся однородными, а если эндотолиальные клетки, то сфероиды становятся люминизированными, с просветом для будущей кровеносной системы. Таким образом, трехмерная печать позволяет использовать различные тканевые сфероиды и собирать из них сложные органические структуры.

«Я не могу сказать, когда мы напечатаем почку. Теоретически на 3D-принтере можно напечатать любой орган.

3Д печать органов

Наверное, в не столь отдаленном будущем это будет именно так, – признается Миронов. – Но если мы создадим что-нибудь попроще, чем почка, то уровень нашей самооценки станет довольно высоким, и мы сможем напечатать почку значительно раньше, чем предполагаем сегодня».

Вот еще одно применение биопечати. С возрастом волосы на голове редеют. С помощью 3D-принтера можно напечатать недостающие луковицы. Сначала необходима биофабрикация луковиц, затем печать волос прямо на голове пациента. В косметологии с помощью биопечати можно устранять морщины, используя аутологичные клетки. 3D-биопринтинг найдет свое применение и в стоматологии, здесь он позволит печатать трехмерную костную ткань из васкуляризированных тканевых сфероидов.

Миронов мечтает запустить первый биопринтер в космос. Но если говорить о более реальных целях и задачах, то сегодня сотрудники лаборатории заняты созданием ручного 3D-принтера типа «биопен», который станет надежным помощником для хирурга. Также планируется выпуск бесклеточной матрицы для «заплаток» на коже, в глазах, на зубах и других органах и тканях человека. «Это все та же клеточная технология с использованием сфероидов, — рассказывает Миронов. – Если убить все клетки – получится бесклеточная матрица, которую гораздо проще вывести на рынок. К сожалению, в России нет законов, которые бы регулировали использование стволовых клеток. Мы же хотим действовать открыто, не нарушая закона, и производить продукт со сроком хранения до двух лет».

Дистанция от зарождения идеи до получения патента обычно составляет 15-20 лет, а вот стоимость любого продукта высоких технологий со временем снижается, порой в тысячи раз.

По некоторым прогнозам, 3D-биопринтеры будут постепенно дешеветь. Современные принтеры для трехмерной печати можно купить за 1000-2000 долл. США, завтра то же самое может произойти с биопринтерами, цена которых сегодня колеблется в пределах от 150000-200000 долл. США до миллиона. В мире уже продано десять коммерческих биопринтеров.

3D-биопринтер NovoGen MMX, разработанный Organovo

«Российский биопринтер по ряду функций и показателей лучше своего прямого конкурента – американского биопринтера Organovo. Наша задача – создать самый лучший в мире принтер для биопечати и удерживать лидерство в данной сфере: первыми получить патент (мы уже подали заявку), опубликовать статью в Science, а потом приступить к тестированию напечатанной щитовидной железы. Да, дамы уже готовы с помощью своего 3D-биопринтера напечатать функционирующую щитовидную железу, это произойдет в марте будущего года, – заявляет Миронов. – Щитовидка – это самый простой орган, поэтому мы решили начать именно с него. Между прочим, щитовидная железа стала первым органом, который был пересажен человеку. Это случилось в 1883 году».

Перспективы биопринтинга

Самый главный вопрос, который волнует современных биоинженеров – каковы перспективы биопринтинга, как он будет развиваться дальше? Владимир Миронов дает следующий прогноз: «Через несколько месяцев мы напечатаем трехмерную щитовидную железу. Но не человеческую, а мышиную или крысиную. Чтобы создать человеческий орган и провести клинические испытания, нужно пройти сложную систему сертификации. В США стволовым клеткам посвящено 20 томов научных трудов, и это только протоколы испытаний. Огромный объем работы – вот что самое сложное. Никому не хочется отвечать за риск, безопасность – превыше всего».

Если внедрение продуктов биопринтинга растянется на долгие годы из-за несовершенства законодательства и отсутствия соответствующих стандартов, то возникает закономерный вопрос: «Когда пациенты смогут использовать продукты 3D-биопечати?». По оптимистическим прогнозам клинические испытания, которые выведут разработку на уровень практики, начнутся в течение 10-15 ближайших лет. Срок довольно большой, но приемлемый с точки зрения совершенствования технологии, которой предстоит, по сути, поспорить с природой, и раз и навсегда решить проблему дефицита органов для трансплантации.

Добавить комментарий

Закрыть меню