Теорема котельникова для чайников

Содержание теоремы Котельникова

1. Теорема не оговаривает вид сигнала a(t), т.е. он может быть и случайным.

2. Теорема утверждает, что вся информация о сигнале a(t) содержится в его выборочных значениях a(nΔt). Следовательно, непрерывный сигнал для передачи по каналу связи может быть преобразован в дискретный по времени сигнал aд(t). Представление непрерывного сигнала в виде последовательности его отсчетов называется дискретизацией. На практике каждый отсчет представляется импульсом величиной a(nΔt) и длительностью τ<<Δt.

Рисунок 7.2 – Дискретизация непрерывного сигнала.

3. Теорема определяет восстановление непрерывного сигнала a(t) по его отсчетам a(nΔt) на приеме: необходимо каждый отсчет умножить на функцию отсчета ψn(t) и произведения просуммировать.

Рисунок 7.3 – Восстановление непрерывного сигнала.

 

Теорема служит теоретической основой построения систем передачи с временным разделением каналов (СП с ВРК).

Сущность ВРК заключается в том, что все каналы поочередно используют одну и ту же полосу частот.

Возможность ВРК связана с тем, что из-за большой скважности импульсов одного канала образуется большой интервал времени, в котором можно разместить импульсы других каналов.

 

 

Рисунок 7.4 – Структурная схема СП с ВРК.

Обозначения на схеме:

a1(t), a2(t), …, an(t) – первичные сигналы;

ФНЧ – фильтры нижних частот. Ограничивают полосу частот первичных сигналов частотой Fmaxна передаче и восстанавливают первичные сигналы из последовательностей отсчетов на приеме;

ЭК1, ЭК2, …, ЭКN – канальные электронные ключи. Осуществляют операцию дискретизации ограниченных по частоте первичных сигналов;

f1(t), f2(t), …, fN(t) – ПППИ с периодом Δt и длительностью τ<<Δt, управляющие работой ЭК;

ГКИ – генератор канальных импульсов;

РКИ – распределитель канальных импульсов;

s1(t), s2(t), …, sN(t) – канальные сигналы;

ОУ – объединяющее устройство. Объединяет канальные сигналы и СС;

СС – синхросигнал. Обеспечивает синхронную работу канальных ЭК на передаче и КС на приеме. Обязательно чем-либо (амплитудой, длительностью и др.) отличается от импульсов канальных сигналов;

ФСС – формирователь СС;

s(t) – групповой сигнал на входе ЛС;

ЛС – линия связи;

s’(t) – групповой сигнал на выходе ЛС, изменившийся под воздействием помех и искажений;

РУ – развязывающее устройство. Обеспечивает разделение канальных сигналов и СС на приеме;

ПрСС – приемник СС.

Рисунок 7.5 – Пояснение принципа ВРК.

⇐ Предыдущая11121314151617181920Следующая ⇒


Дата добавления: 2014-10-31; Просмотров: 369; Нарушение авторских прав?;




ЛЕКЦИЯ №3 Теорема А.В. Котельникова

⇐ ПредыдущаяСтр 5 из 21Следующая ⇒

Квантование сигналов.

Частота дискретизации. Основные методы. Ошибки, оценка ошибок.

Теорема Котельникова

В области цифровой обработки сигналов, Теоре́ма Коте́льникова (в англоязычной литературе — теорема Найквиста — Шеннона, или теорема отсчётов) связывает аналоговые и дискретные сигналы и гласит, что, если аналоговый сигнал имеет конечный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своимотсчётам, взятым с частотой, большей или равной удвоенной верхней частоте :

Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́й характеристике точек разрыва. Если сигнал имеет разрывы любого рода в функции зависимости его от времени, то его спектральная мощность нигде не обращается в нуль. Именно это подразумевает понятие «спектр, ограниченный сверху конечной частотой ».

Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́й характеристике. Соответственно, ширина их спектра бесконечна. В таком случае полное восстановление сигнала невозможно, и, из теоремы Котельникова, вытекают два следствия:

1. Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой , где — максимальная частота, которой ограничен спектр реального сигнала;

2. Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда:

где — функция sinc. Интервал дискретизации

удовлетворяет ограничениям

Мгновенные значения данного ряда есть дискретные отсчёты сигнала .

Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат[1]. О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом[2][3]: «Любую функцию , состоящую из частот от 0 до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон[4], поэтому в западной литературе эту теорему часто называют теоремой Шеннона.

 

 

Частота дискретизации (или частота сэмплирования) — частота, с которой происходит оцифровка, хранение, обработка или конвертация сигнала из аналога в цифру. Частота дискретизации, согласно Теореме Котельникова, ограничивает максимальную частоту оцифрованного сигнала до половины своей величины.

Чем выше частота дискретизации, тем более качественной будет оцифровка. Как следует из теоремы Котельникова для того чтобы одназначно восстановить исходный сигнал, частота дискретизации должна превышать наибольшую необходимую частоту сигнала в два раза.

 

На данный момент, в звуковой технике среднего уровня глубина дискретизации находится в пределах 10-12 бит. Но на слух заметить разницу между 10 и 12 битами не представляется возможным в связи с тем, что человеческое ухо не способно различить такие малые отклонения. Ещё одной причиной бесполезности служит Коэффициент нелинейных искажений УМЗЧ и других компонентов звукогого тракта, явно превышающий величину шага квантования. Бо́льшее разрешение зачастую носит лишь маркетинговый смысл и фактически на слух не заметно.

Оцифро́вка (англ. digitization) — описание объекта, изображения или аудио- видеосигнала (в аналоговом виде) в виде набора дискретных цифровых замеров (выборок) этого сигнала/объекта, при помощи той или иной аппаратуры, т. е. перевод его вцифровой вид, пригодный для записи на электронные носители.

Для оцифровки объект подвергается дискретизации (в одном или нескольких измерениях, например, в одном измерении для звука, в двух для растрового изображения) и аналогово-цифровому преобразованию конечных уровней.

Полученный в результате оцифровки массив данных («цифровое представление» оригинального объекта) может использоваться компьютером для дальнейшей обработки, передачи по цифровым каналам, сохранению на цифровой носитель. Перед передачей или сохранением цифровое представление, как правило, подвергается фильтрации и кодированию для уменьшения объема.

Иногда термин «оцифровка» используется в переносном смысле, в качестве замены для соответствующего термина[уточнить], при переводе информации из аналогового вида в цифровой. Например:

· Оцифровка звука.

· Оцифровка видео.

· Оцифровка изображения.

· Оцифровка книг — как сканирование, так и (в дальнейшем) распознавание.

· Оцифровка бумажных карт местности — означает сканирование и, как правило, последующую векторизацию (растрово-векторное преобразование, т. е. перевод в формат векторного описания).

Дискретизация

При оцифровке сигнала привязанного ко времени, дискретизацию обычно характеризуют частотой дискретизации — частотой снятия замеров

При сканировании изображения с физических объектов, дискретизация характеризуется количеством результирующих пикселов на единицу длины (например, количеством точек на дюйм — англ.

dot per inch, DPI) по каждому из измерений.

В цифровой фотографии дискретизация характеризуется количеством пикселей на кадр.

Квантование сигналов

Дискретные сигналы создаются на основе непрерывных сигналов. Процесс преобразования непрерывного сигнала в дискретный называется «квантование сигнала». Исходный непрерывный сигнал называется «квантуемый сигнал», сигнал, получаемый в результате квантования, называется «квантованный сигнал». Существуют разные способы квантования непрерывного сигнала.

Квантование по времени. Квантованный сигнал содержит отдельные значения (дискреты) квантуемого сигнала, которые выделяются в фиксированные моменты времени. Процесс квантования по времени показан на рис. 21, где x(t) – квантуемый сигнал, x(t) – квантованный сигнал.

 

 

Значения сигнала выделяются через равные промежутки времени T, где T – период (интервал) квантования. Следовательно, квантованный сигнал будет состоять из последовательности дискрет квантуемого сигнала, выделенных в моменты времени, кратные периоду квантования. Квантованный сигнал при квантовании по времени описывается решетчатой функцией времени квантуемого сигнала

 

где m – целочисленный аргумент времени, m=1,2,3…

 

Квантование по уровню. В моменты достижения квантуемым сигналом некоторых фиксированных уровней, квантованному сигналу присваивается значение достигнутого уровня, и это значение квантованного сигнала сохраняется до момента достижения квантуемым сигналам следующего уровня (рис.22).

 

 

На рис. 22 для квантуемого сигнала x(t) определены уровни квантования с интервалом (шагом) a. Значения квантованного сигнала x(t) изменяются в момент достижения квантуемым сигналом очередного уровня. В результате квантованный сигнал представляет собой ступенчатую функцию времени.

 

Типичным устройством, которое осуществляет квантование по уровню, является электромагнитное реле (рис. 23), содержащее электромагнит K и переключаемые электромагнитом электрические контакты S. Входом для реле является напряжение U на обмотке электромагнита, а выходом – состояние контактов S. При непрерывном изменении напряжения на электромагните состояние контактов (замкнуты или разомкнуты) будет изменяться только при переходе величины напряжения через уровень срабатывания Uср реле (уровень срабатывания – значение тока, при котором электромагнит срабатывает и переключает контакты реле).

 

Таким образом, для реле квантованный сигнал может принимать только два уровня: контакты S разомкнуты, или контакты S замкнуты. Состояние контактов удобно описывать как логическую величину, принимающую значение «1» при замкнутых контактах, и значение «0» при разомкнутых контактах.

 

Характеристика преобразования входного напряжения U в состояние контактов S для реле показана на рис.23. Это ступенчатая характеристика, изменение уровня которой происходит при входном напряжении U = Uср. Характеристика подобного вида получила название «релейная характеристика». Релейная характеристика является одним из случаев нелинейной характеристики.

 

Квантование по времени и по уровню. В этом случае оба предыдущих способа комбинируются, поэтому способ квантования называют также комбинированным. При комбинированном квантовании квантованному сигналу в наперед заданные моменты времени присваивается значение ближайшего фиксированного уровня, которого достиг квантуемый сигнал. Это значение сохраняется до следующего момента квантования.

Графики квантуемого и квантованного сигналов показаны на рис. 24. На графике квантуемого сигнала x(t) точками показаны значения достигнутых уровней, ближайших к значениям квантуемого сигнала в момент квантования. Изменения квантованного сигнала происходят в моменты квантования, кратные периоду T квантования по времени. Таким образом, квантованный сигнал будет характеризоваться периодом квантования и значением ближайшего фиксированного уровня.

 

Типичным примером устройства, в котором имеет место комбинированное квантование, является аналого-цифровой преобразователь (АЦП) и цифровой прибор, построенный с использованием аналого-цифрового преобразователя. Выходная информация таких устройств обновляется с периодом, определяемым длительностью преобразования входного сигнала в цифровой код (квантование по времени), а выходная информация представляется с конечной точностью, определяемой разрешающей способностью квантования или разрядностью кода для представления квантованного сигнала.

Частота дискретизации (или частота семплирования, англ. sample rate) — частота взятия отсчетов непрерывного во времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем). Измеряется в герцах.

Термин применяется и при обратном, цифро-аналоговом преобразовании, особенно если частота дискретизации прямого и обратного преобразования выбрана разной (Данный приём, называемый также «Масштабированием времени», встречается, например, при анализе сверхнизкочастотных звуков, издаваемых морскими животными).

Чем выше частота дискретизации, тем более широкий спектр сигнала может быть представлен в дискретном сигнале. Как следует из теоремы Котельникова, для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала.

Некоторые из используемых частот дискретизации звука:

· 8 000 Гц — телефон, достаточно для речи, кодек Nellymoser;

· 11 025 Гц;

· 12 000 Гц (на практике встречается редко);

· 16 000 Гц;

· 22 050 Гц — радио;

· 24 000 Гц

· 32 000 Гц;

· 44 100 Гц — используется в Audio CD;

· 48 000 Гц — DVD, DAT;

· 96 000 Гц — DVD-Audio (MLP 5.1);

· 192 000 Гц — DVD-Audio (MLP 2.0);

· 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;

· 5 644 800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

⇐ Предыдущая12345678910Следующая ⇒

Читайте также:


Сигналы с ограниченным спектром. Теорема Котельникова

Разложение непрерывных сигналов в ряд Котельникова

Как отмечено ранее, любые сигналы конечной длительности теоретически имеют бесконечно широкий спектр частот. В то же время доля энергии, передаваемая на высоких частотах, очень мала и ею при расчете полной энергии сигнала можно пренебречь. Следовательно, сигналы с ограниченным спектром являются удобными математическими моделями реальных сигналов.

В 1933 году В. А. Котельников доказал, что сигнал s(t) с ограниченной полосой частот, не имеющий спектральных компонент с частотами, которые превышают значение ωв = 2πFв, однозначно определяется значениями, выбранными через равные промежутки времени [1]

Δt = π/ωв = 1/2Fв.

Известно, что при аналогово-цифровом преобразовании, чем меньше частота оцифровки (или больше период дискретизации) и грубее квантование сигнала, тем меньше данных необходимо для представления аналогового сигнала в цифровом виде. С другой стороны с уменьшением объема данных увеличивается вероятность потери информации содержащейся в сигнале.

Чтобы продемонстрировать искажение информации при неправильном выборе частоты дискретизации сигнала рассмотрим примеры.

Пример.

Гармонический сигнал имеет частоту f (период T = 1/f). Проведем дискретизацию сигнала с периодом дискретизации Tд меньшим половины периода входного сигнала T (рис. 4.1).

 

 

Рис. 4.1. Дискретизация сигнала с периодом Тд < Т/2

 

Очевидно, что дискретные отсчеты сигнала однозначно не отображают форму исходного сигнала, в частности по получившимся точкам можно построить гармонический сигнал с периодом Tискаж., отличающимся от периода исходного сигнала T. Период Tискаж. больше периода исходного сигнала T, соответственно частота меньше, частоты исходного сигнала f (рис. 4.2).

Данный эффект называется стробоскопическим эффектом или алиасингом. Он заключается в появлении ложной низкочастотной составляющей при дискретизации сигнала с частотой меньшей удвоенной частоты исходного сигнала (или с периодом большим половины периода исходного сигнала), отсутствующей в исходном сигнале.

 

Рис. 4.2.

Стробоскопический эффект дискретизации

 

При дискретизации с периодом равным половине исходного аналогового сигнала (fд = 2f) возникает неопределенность начальной фазы и амплитуды сигнала, т.е. возможно зеркальное искажение (противофаза), при этом частота исходного сигнала не искажается. В крайнем случае, мы можем получить отсчеты сигнала равные нулю (рис. 4.3).

 

Рис. 4.3. Дискретизация сигнала с периодом Тд = Т/2

Если период дискретизации меньше половины периода исходного сигнала, то очевидно, что через получившиеся после оцифровки точки можно построить только один гармонический сигнал, соответствующий исходному, без искажения начальной фазы, амплитуды и частоты (рис. 4.4).

 

Рис. 4.4. Дискретизация сигнала с периодом Тд < Т/2

 

Таким образом, для адекватного восстановления гармонического сигнала по дискретным отсчетам, период дискретизации должен быть не меньше половины периода сигнала. Частота равная половине частоты дискретизации называется частотой Найквиста fN = fд/2.

Таким образом, аналоговый сигнал с ограниченным спектром может быть восстановлен однозначно и без искажений по своим дискретным отсчетам, взятым с частотой большей удвоенной максимальной частоты его спектра Fд > 2·Fmax.

Данное утверждение известно как теорема Котельникова (в западной литературе теорема Найквиста-Шеннона) или теорема отсчетов.

 

Рис. 4.5. Временные диаграммы непрерывного сигнала s(t) и дискретизированного sд(t)

 

Важно, что не надо передавать непрерывно исходный сигнал s(t), достаточно передавать отсчёты s(kDt). Это первый шаг перехода от непрерывного сигнала к цифровому. С точки зрения математики теорема Котельникова означает представление сигнала в виде ряда:

, (4.1)

где s(kt) – отсчёты;

(sin ωв(tkt)) / ωв(tkt) – функции отсчётов.

Ряд Котельникова – это разложение сигнала s(t) в ряд по ортогональным функциям φk(t).

(4.2)

Теоретически дискретизация осуществляется с помощью d-импульсов.

;

 

 

Рис. 4.6. Временная диаграмма одиночного d-импульса

 

Спектр одиночного d-импульса получим, используя преобразование Фурье:

Использовано "фильтрующее" свойство дельта-функций:

Следовательно, спектр одиночного дельта-импульса имеет вид:

 

 

Рис. 4.7. Спектр одиночного δ-импульса

Чтобы получить отсчёты функции s(t) перемножим функцию s(t) на периодическую последовательность дельта-импульсов с периодом Т = Dt.

 

Рис. 4.8. Временная диаграмма периодической последовательности

δ-импульсов

Так как сигнал периодический, то его спектр будет дискретным.

 

(4.3)

;

Т = Dt; ωд – частота дискретизации.

Спектр периодической последовательности дельта-импульсов в соответствии с формулой для U(t) имеет следующий вид:

 

 

Рис. 4.9. Спектр периодической последовательности δ-импульсов

 


Дата добавления: 2017-10-04; просмотров: 1261;


Похожие статьи:

Теорема Котельникова В. А.

В качестве достаточно универсальной модели сигнала принимается случайный процесс.

Пусть каждая из реализаций этого случайного процесса представляет функцию с ограниченным спектром ω ≤ ωmax = 2πƒmax.

В этом случае для преобразования непрерывного сигнала в дискретно-непрерывный можно использовать теорему Котельникова.

В 1933 году Котельникова В.А.

доказал, что сигнал, описываемый функцией с ограниченным спектром, полностью определяется дискретным рядом значений, отсчитанных через максимально допустимые интервалы времени

,

где ƒmax – максимальная частота в спектре сигнала.

Следовательно, если требуется передать сигнал, описываемый дискретной функцией ƒ(t) с ограниченным спектром, то достаточно передавать отдельные мгновенные значения, отсчитанные через конечный промежуток времени . По этим значениям непрерывный сигнал может быть полностью восстановлен на выходе системы: .

Это положение объясняется тем, что отсутствие высших гармоник в составе ƒ(t) накладывает ограничения на способы, которыми могут быть соединены каждые две соседние точки.


Рис. 9.3

Доказательство состоит в разложении функции ƒ(t) в особого рода ряд.

В общем случае

,

где

.

В данном, частном случае имеем

В момент времени

;

Функция же F(jω) на конечном промежутке (–ωm; ωm) может быть разложена в ряд Фурье по частотам следующим образом (путём её периодического продолжения с периодом 2ωm на весь интервал частот ω от –∞ до ∞)

;
;

где

;


Рис.

9.4

Из сравнения (9.1) и (9.2) следует

.

Таким образом коэффициенты An пропорциональны значениям функции ƒ(t) в дискретные момента времени

.

Коэффициенты An полностью определяют F(jω), а последняя полностью определяет функцию ƒ(t). Следовательно, знание значений функции ƒ(t) в моменты временидостаточно для полного определения функции ƒ(t).

Рассмотрим теперь восстановление функции ƒ(t) по её значениям в моменты времени tn.

F(jω) – периодическая;

ƒ(t) – в пределах 1-го периода.

если заменить на f(nΔt), то изменится знак в ejnΔtω

Восстановление идет по функции.

1. f(nΔt) – значения f(t) в моменты времени nΔt.

2. – функция, принимающая max = 1 в точке t = nΔt, а в остальных точках kΔt, где kn равна нулю, так как t = kΔt, то

.

Рассмотрим смысл этого выражения.


Рис. 9.5

Свойства ряда Котельникова:

1. Каждое слагаемое превращается в нуль при всех значениях, при которых (уже показали).

2. Для восстановления истинного значения функции в любой момент времени, кроме точек отсчета, нужно вычислять бесконечную сумму ряда. http://peredacha-informacii.ru/ Это существенный недостаток теоремы Котельникова.

3. Теорема Котельникова применима лишь для сигналов с ограниченным спектром, т.е. принципиально для сигналов бесконечных во времени.

Несмотря на указанные недостатки, теорема Котельникова широко используется на практике при наличии ограничений на спектр сигнала.

1.5. Теорема Котельникова

В 1933 году В.А.

Котельниковым доказана теорема отсчетов [6, 32], имеющая важное значение в теории связи: непрерывный сигнал  с ограниченным спектром можно точно восстановить (интерполировать) по его отсчетам , взятым через интервалы , где  – верхняя частота спектра сигнала.

В соответствии с этой теоремой сигнал  можно представить рядом Котельникова [6, 32]:

.

(1.21)

Таким образом, сигнал , можно абсолютно точно представить с помощью последовательности отсчетов , заданных в дискретных точках  (рис.1.16).

Функции

(1.22)

образуют ортогональный базис в пространстве сигналов, характеризующихся ограниченным спектром:

 при .

(1.23)

Обычно для реальных сигналов можно указать диапазон частот, в пределах которого сосредоточена основная часть его энергии и которым определяется ширина спектра сигнала. В ряде случаев спектр сознательно сокращают. Это обусловлено тем, что аппаратура и линия связи должны иметь минимальную полосу частот. Сокращение спектра выполняют, исходя из допустимых искажений сигнала. Например, при телефонной связи хорошая разборчивость речи и узнаваемость абонента обеспечиваются при передаче сигналов в полосе частот . Увеличение  приводит к неоправданному усложнению аппаратуры и повышению затрат. Для передачи телевизионного изображения при стандарте в 625 строк полоса частот, занимаемая сигналом, составляет около 6 МГц.

Из вышесказанного следует, что процессы с ограниченными спектрами могут служить адекватными математическими моделями многих реальных сигналов.

Функция вида  называется функцией отсчетов (рис.1.17).

 Она характеризуется следующими свойствами. Если , функция отсчетов имеет максимальное значение при , а в моменты времени  () она обращается в нуль; ширина главного лепестка функции отсчетов на нулевом уровне равна , поэтому минимальная длительность импульса, который может существовать на выходе линейной системы с полосой пропускания , равна ; функции отсчетов ортогональны на бесконечном интервале времени.

На основании теоремы Котельникова может быть предложен следующий способ дискретной передачи непрерывных сигналов:

Для передачи непрерывного сигнала  по каналу связи с полосой пропускания  определим мгновенные значения сигнала  в дискретные моменты времени , (). После этого передадим эти значения по каналу связи каким — либо из возможных способов и восстановим на приемной стороне переданные отсчеты. Для преобразования потока импульсных отсчетов в непрерывную функцию пропустим их через идеальный ФНЧ с граничной частотой .

Можно показать, что энергия сигнала находится по формуле [6, 32]:

.

(1.24)

Для сигнала, ограниченного во времени, выражение (1.24) преобразуется к виду:

.

(1.25)

Выражение (1.25) широко применяется в теории помехоустойчивого приема сигналов, но является приближенным, т.к. сигналы не могут быть  одновременно ограничены по частоте и времени.

 


Добавить комментарий

Закрыть меню