Xyz анализ пример

ABC и XYZ анализ в Excel с примером расчета товарного ассортимента

Для анализа ассортимента товаров, «перспективности» клиентов, поставщиков, дебиторов применяются методы ABC и XYZ (очень редко).

В основе ABC-анализа – известный принцип Парето, который гласит: 20% усилий дает 80% результата. Преобразованный и детализированный, данный закон нашел применение в разработке рассматриваемых нами методов.

ABC-анализ в Excel

Метод ABC позволяет рассортировать список значений на три группы, которые оказывают разное влияние на конечный результат.

Благодаря анализу ABC пользователь сможет:

  • выделить позиции, имеющие наибольший «вес» в суммарном результате;
  • анализировать группы позиций вместо огромного списка;
  • работать по одному алгоритму с позициями одной группы.

Значения в перечне после применения метода ABC распределяются в три группы:

  1. А – наиболее важные для итога (20% дает 80% результата (выручки, к примеру)).
  2. В – средние по важности (30% — 15%).
  3. С – наименее важные (50% — 5%).

Указанные значения не являются обязательными. Методы определения границ АВС-групп будут отличаться при анализе различных показателей.

Но если выявляются значительные отклонения, стоит задуматься: что не так.

Условия для применения ABC-анализа:

  • анализируемые объекты имеют числовую характеристику;
  • список для анализа состоит из однородных позиций (нельзя сопоставлять стиральные машины и лампочки, эти товары занимают очень разные ценовые диапазоны);
  • выбраны максимально объективные значения (ранжировать параметры по месячной выручке правильнее, чем по дневной).

Для каких значений можно применять методику АВС-анализа:

  • товарный ассортимент (анализируем прибыль),
  • клиентская база (анализируем объем заказов),
  • база поставщиков (анализируем объем поставок),
  • дебиторов (анализируем сумму задолженности).

Метод ранжирования очень простой. Но оперировать большими объемами данных без специальных программ проблематично. Табличный процессор Excel значительно упрощает АВС-анализ.

Общая схема проведения:

  1. Обозначить цель анализа. Определить объект (что анализируем) и параметр (по какому принципу будем сортировать по группам).
  2. Выполнить сортировку параметров по убыванию.
  3. Суммировать числовые данные (параметры – выручку, сумму задолженности, объем заказов и т.д.).
  4. Найти долю каждого параметра в общей сумме.
  5. Посчитать долю нарастающим итогом для каждого значения списка.
  6. Найти значение в перечне, в котором доля нарастающим итогом близко к 80%. Это нижняя граница группы А. Верхняя – первая в списке.
  7. Найти значение в перечне, в котором доля нарастающим итогом близко к 95% (+15%). Это нижняя граница группы В.
  8. Для С – все, что ниже.
  9. Посчитать число значений для каждой категории и общее количество позиций в перечне.
  10. Найти доли каждой категории в общем количестве.

АВС-анализ товарного ассортимента в Excel

Составим учебную таблицу с 2 столбцами и 15 строками. Внесем наименования условных товаров и данные о продажах за год (в денежном выражении). Необходимо ранжировать ассортимент по доходу (какие товары дают больше прибыли).

  1. Отсортируем данные в таблице. Выделяем весь диапазон (кроме шапки) и нажимаем «Сортировка» на вкладке «Данные».

    В открывшемся диалоговом окне в поле «Сортировать по» выбираем «Доход». В поле «Порядок» — «По убыванию».

  2. Добавляем в таблицу итоговую строку. Нам нужно найти общую сумму значений в столбце «Доход».
  3. Рассчитаем долю каждого элемента в общей сумме. Создаем третий столбец «Доля» и назначаем для его ячеек процентный формат. Вводим в первую ячейку формулу: =B2/$B$17 (ссылку на «сумму» обязательно делаем абсолютной). «Протягиваем» до последней ячейки столбца.
  4. Посчитаем долю нарастающим итогом. Добавим в таблицу 4 столбец «Накопленная доля». Для первой позиции она будет равна индивидуальной доле. Для второй позиции – индивидуальная доля + доля нарастающим итогом для предыдущей позиции. Вводим во вторую ячейку формулу: =C3+D2. «Протягиваем» до конца столбца. Для последних позиций должно быть 100%.
  5. Присваиваем позициям ту или иную группу. До 80% — в группу А.

    XYZ анализ

    До 95% — В. Остальное – С.

  6. Чтобы было удобно пользоваться результатами анализа, проставляем напротив каждой позиции соответствующие буквы.

Вот мы и закончили АВС-анализ с помощью средств Excel. Дальнейшие действия пользователя – применение полученных данных на практике.

XYZ-анализ: пример расчета в Excel

Данный метод нередко применяют в дополнение к АВС-анализу. В литературе даже встречается объединенный термин АВС-XYZ-анализ.

За аббревиатурой XYZ скрывается уровень прогнозируемости анализируемого объекта. Этот показатель принято измерять коэффициентом вариации, который характеризует меру разброса данных вокруг средней величины.

Коэффициент вариации – относительный показатель, не имеющий конкретных единиц измерения. Достаточно информативный. Даже сам по себе. НО! Тенденция, сезонность в динамике значительно увеличивают коэффициент вариации. В результате понижается показатель прогнозируемости. Ошибка может повлечь неправильные решения. Это огромный минус XYZ-метода. Тем не менее…

Возможные объекты для анализа: объем продаж, число поставщиков, выручка и т.п. Чаще всего метод применяется для определения товаров, на которые есть устойчивый спрос.

Алгоритм XYZ-анализа:

  1. Расчет коэффициента вариации уровня спроса для каждой товарной категории.

    Аналитик оценивает процентное отклонение объема продаж от среднего значения.

  2. Сортировка товарного ассортимента по коэффициенту вариации.
  3. Классификация позиций по трем группам – X, Y или Z.

Критерии для классификации и характеристика групп:

  1. «Х» — 0-10% (коэффициент вариации) – товары с самым устойчивым спросом.
  2. «Y» — 10-25% — товары с изменчивым объемом продаж.
  3. «Z» — от 25% — товары, имеющие случайный спрос.

Составим учебную таблицу для проведения XYZ-анализа.

  1. Рассчитаем коэффициент вариации по каждой товарной группе. Формула расчета изменчивости объема продаж: =СТАНДОТКЛОНП(B3:H3)/СРЗНАЧ(B3:H3).
  2. Классифицируем значения – определим товары в группы «X», «Y» или «Z». Воспользуемся встроенной функцией «ЕСЛИ»: =ЕСЛИ(I3<=10%;"X";ЕСЛИ(I3<=25%;"Y";"Z")).

В группу «Х» попали товары, которые имеют самый устойчивый спрос. Среднемесячный объем продаж отклоняется всего на 7% (товар1) и 9% (товар8). Если есть запасы этих позиций на складе, компании следует выложить продукцию на прилавок.

Скачать примеры ABC и XYZ анализов

Запасы товаров из группы «Z» можно сократить. Или вообще перейти по этим наименованиям на предварительный заказ.

Главная \ Статьи \ Нормирование и управление запасами. Журнал ФармОбоз \ Статьи за 2007г. \ XYZ –анализ

XYZ –анализ

XYZ –анализ.

 

В предыдущей статье (АВС-анализ. Как и зачем его применять в аптеке) обсуждалась тема сегментации товаров по степени важности,  степени вклада в общий результат.

Продолжая тему сегментации товаров в этой публикации рассмотрим XYZ-анализ. Для каких целей и задач используется этот анализ, какие решения на его основе будут приниматься – об этом и пойдет речь далее.

Итак, XYZ-анализ позволяет разделить товары на группы в связи со стабильностью их поведения. В результате группу X образуют товары самые стабильные, с предсказуемыми продажами, а соответственно относительно легко планируемыми поставками.

Группа Y – стабильность потребления средняя, соответственно товар требует к себе большего внимания, точность прогнозирования продаж уменьшается. Результат – планировать поставки сложней. Больше вероятности допущения неликвидов или дефицита.

И, наконец, товары группы Z – точность прогнозирования еще меньше, нестабильность в поведении товаров выше. В некоторых случаях спрогнозировать спрос просто является нереальной задачей.

После того, как все товары поделены на группы, мы начинаем вырабатывать стандарты по управлению запасами. Мы определяем уровень дефицита, который будет являться для нашей аптеки нормой. 

Итак, как проводится XYZ-анализ. Как и в предыдущих статьях на тему управления запасами, рассмотрим алгоритм на конкретном примере.

Первый этап – сбор данных о продажах товара (Таблица 1).  Данные формируем в натуральном выражении. Если мы будем использовать объем продаж в денежном выражении, негативно скажется инфляция, и результаты мы получим некорректные.

При сборе данных мы должны отталкиваться от частоты проведения анализа и соответственно количества периодов, которые будем включать в анализ. В общем случае (безотносительно к деятельности аптеки) частота проведения XYZ-анализа зависит от товаров, с которыми работает компания. Так, чем дороже товары (например, сложная бытовая техника), тем соответственно реже он продается, так как цикл принятия решения о покупке будет длительный. В таком случае анализ стоит проводить раз в пол года или реже, так как один и тот же товар при частом проведении анализа в разные периоды будет попадать в различные группы (X, Y, Z). Кроме того, частота проведения XYZ-анализа  зависит от жизненного цикла товаров. Чем короче цикл, тем чаще надо проводить анализ. В начале жизненного цикла товар ведет себя нестабильно. Когда наблюдается пик спроса, товар более стабилен, а на спаде (в конце жизненного цикла), опять проявляется большая нестабильность продаж (Рисунок 1).

ABC-XYZ анализ в Excel. Примеры и практическое применение

Так же на частоту проведения анализа влияет наличие сезонности.

Рисунок 1 – Жизненный цикл товара и стабильность его поведения

Но поскольку в нашем случае речь все-таки идет о фармацевтическом розничном бизнесе, то и периодичность проведения подробнее рассмотрим для аптеки. Основная доля товаров (лекарственных средств) продается весьма стабильно, значит, нет необходимости пересматривать результаты анализа. Другая часть ассортимента – например, медицинские приборы – обладают меньшей стабильностью. Если аптека активно расширяет ассортиментную матрицу, то стоит чаще проводить XYZ-анализ, так как ситуация в стабильности при увеличении количества позиций в ассортименте будет ухудшаться. Учитывая сезонность некоторых лекарственных препаратов, стоит согласовывать сезонность с периодичностью проведения анализа (зимний сезон, летний сезон и т.д.).  Итак, проводим анализ как минимум два раза в год: в сезон и не в сезон.

 

В качестве примера рассмотрим проведение XYZ – анализа за три месяца, поскольку нас сейчас интересует сам алгоритм (Таблица 1).

 

Второй этап – нахождение отклонения от среднего значения. Графически это можно приставить следующим образом (Рисунок 2):

Где σ — среднее квадратичное отклонение

x – среднее значение за n периодов

n – количество периодов

 Возвращаясь к нашему примеру, мы рассчитываем среднее квадратичное отклонение (Таблица 2).

 Таблица 2 – Расчет среднего квадратичного отклонения

Если для проведения XYZ-анализа вы используете стандартное приложение Microsoft Office Excel, то для расчета среднего квадратичного отклонения проще использовать функцию: СТАНДОТКЛОНПА(x1😡n).

 Если просто найти отклонение от среднего значения, мы не сможем определить его стабильность, так как отклонение от среднего значения в 100 единиц при среднем спросе в 1000 единиц менее серьезное, чем отклонение в 500 единиц при том же среднем спросе (Рисунок 3).

 Рисунок 3 – Отклонение от среднего спроса

Теперь остается разделить товары на группы по стабильности. Для этого необходимо отсортировать столбец «Коэффициент вариации» по возрастанию. В результате в начале списка получаем товары с наименьшим коэффициентом вариации, а, следовательно, самые стабильные (Таблица 4).

Остается определить границы групп, то есть, какие товары будут относиться к группе X, какие соответственно Y и Z. В различных источниках можно найти массу рекомендаций, при каких коэффициентах вариации определяем границы групп. Но на практике целесообразно граница групп определять самостоятельно, так как у каждой аптеки своя специфика. Технология определения групп такая же, что и в ABC – анализе, то есть графический метод. Для этого необходимо построить график. Ось X  — товары. Ось Y – коэффициент вариации (Рисунок 4).

Рисунок 4 – Определение границ групп

Технология определения групп X, Y и Z:

Соединяем крайние точки графика и проводим касательную до первой выступающей точки графика (Рисунок 5). Точка графика при пересечении с прямой является границей группы X.  В нашем примере в группу X будут входить первые 4-е товара.

 Рисунок 5 – Определение границы группы X

В таблице 5 представлена сводная таблица с результатами анализа. 

Итак, выводы:

Для товаров группы X точность прогнозирования высокая, уровень страхового запаса будет относительно невысокий, так как разброс спроса здесь невелик. И при этом отсутствует необходимость ежедневного контроля наличия товара. То есть можно проверять наличие товара через определенные промежутки времени (например, один раз в неделю), то есть управлять запасами, используя фиксированный период времени и пересчитывая размер партии (подробности о технологиях управления запасами – в дальнейших публикациях).  Можем позволить себе высокий уровень бездефицитности.

            Группа Y. Точность прогнозирования ниже, уровень страхового запаса будет повышаться, так как спрос проявляет большую нестабильность. Контролировать наличие товара надо более тщательно, вплоть до ежедневного контроля, что бы не допустить серьезного дефицита. Соответственно надо применять технологии управления запасами, которые предусматривают постоянный контроль уровня запаса. Содержать большой запас дорого, поэтому допустимый уровень дефицита увеличивается.

            Группа Z. Точность прогнозирования крайне низкая. Проблемы при управлении запасами заключаются в том, что размер страхового запаса становится крайне высоким. Для его поддержания необходимо большое количество денежных средств, которые при таком подходе будут заморожены в товарном запасе. В этой группе допускается более высокий дефицит, так как потери из-за дефицита могут быть меньше, чем из-за замороженных денежных средств в товарном запасе. Кроме этого здесь могут применяться следующие технологии. Во-первых – доставка под заказ. Распространяется на дорогостоящие лекарственные средства при внесении частичной предоплаты. Во-вторых  — выбор поставщиков, которые обеспечат быструю реакцию. Как известно точность прогнозирования тем выше, чем короче горизонт прогнозирования. Поэтому и поставщик по этой группе товаров должен обладать быстрой реакцией. Еще один момент не стоит забывать. Если товар в Вашей аптеке дефицитный, то есть этот дефицит допускается по тем или иным причинам, то он будет проявлять большую нестабильность. Поэтому если Вам удается ликвидировать дефицит, товар из группы Z может перейти и в группу X.

        В следующей статье мы продолжим беседу об анализах товарного запаса и разработаем конкретные стратегии к каждой товарной группе по ABC и XYZ – анализам. Именно объединение ABC и XYZ – анализов и является отправной точкой при разработке стратегии управления запасами.

XYZ анализ продаж. Пример расчета в Excel

.

Добавить комментарий

Закрыть меню